Functional assessment of a new extended depth-of-focus intraocular lens

Abstract

Background/objective

This study aimed to investigate the visual performance of a new extended depth-of-focus intraocular lens (EDOF-IOL).

Subjects/methods

In this multicenter, prospective, observational study, we enrolled 97 patients who underwent cataract surgery or refractive lens exchange with implantation of the Mini Well EDOF-IOL (SIFI, Italy). Patients underwent postoperatively the following examinations between 4 and 8 weeks after surgery: corrected distance visual acuity (CDVA), reading speed with Radner’s chart, distance-corrected near visual acuity (DCNVA), defocus curve, contrast sensitivity, and haloes quantitative assessment.

Results

In the whole sample, the mean monocular CDVA and DCNVA were, respectively, 0.02 ± 0.07 logMAR and 0.38 ± 0.15 logRAD (logarithm of the reading acuity determination). In the 67 bilaterally implanted patients, binocular CDVA and DCNVA were better (0.00 ± 0.05 logMAR and 0.26 ± 0.13 logRAD) than the corresponding monocular values (p = 0.02 and p = 0.0002, respectively). Ninety-two percent of patients bilaterally implanted reached a binocular reading speed >80 words per minute at a 0.5 logRAD print size (corresponding to the common book print size). The defocus curves showed that the EDOF-IOL provided increased depth of focus through 2.0 D of defocus, with the best performance at 1.0 and 1.5 D. Contrast sensitivity was within normal limits at all spatial frequencies. The mean visual disturbance index was 0.08 ± 0.12, suggesting low night visual disturbances.

Conclusions

The new EDOF-IOL provided good visual acuity for distance, intermediate, and near vision, with no loss of contrast sensitivity and low risk of night visual disturbances.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Savini G, Hoffer KJ, Lombardo M, Serrao S, Schiano-Lomoriello D, Ducoli P. Influence of the effective lens position, as predicted by axial length and keratometry, on the near add power of multifocal intraocular lenses. J Cataract Refract Surg. 2016;42:44–49.

  2. 2.

    Alfonso JF, Fernández-VegaL, Baamonde MB, Montés-Micó R. Prospective visual evaluation of apodized diffractive intraocular lenses. J Cataract Refract Surg. 2007;33:1235–43.

  3. 3.

    Kohnen T, Nuijts R, Levy P, Haefliger E, Alfonso JF. Visual function after bilater implantation of apodized diffractive aspheric multifocal intraocular lenses with a +3.0 D addition. J Cataract Refract Surg. 2009;35:2062–9.

  4. 4.

    Maxwell WA, Cionni RJ, Lehmann RP, Modi SS. Functional outcomes after bilateral implantation of apodized diffractive aspheric acrylic intraocular lenses with a +3.0 or +4.0 diopter addition power. J Cataract Refract Surg. 2009;35:2054–61.

  5. 5.

    Pedrotti E, Mastropasqua R, Passilongo M, Parisi G, Marchesoni I, Marchini G. Comparison of two multifocal intraocular lens designs that differ only in near add. J Refract Surg. 2014;30:754–60.

  6. 6.

    Hayashi K, Ogawa S, Manabe S, Hirata A. Visual outcomes in eyes with a distance-dominant diffractive multifocal intraocular lens with low near addition power. Br J Ophthalmol. 2015;99:1466–70.

  7. 7.

    Kretz FTA, Gerl M, Gerl R, Müller M, Auffarth GU, ZKB00 Study Group Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study. Br J Ophthalmol. 2015;99:1655–9.

  8. 8.

    Vega F, Alba-Bueno F, Millán MS, Varón C, Gil MA, Buil JA. Halo and through-focus performance of four diffractive multifocal intraocular lenses. Invest Ophthalmol Vis Sci. 2015;56:3967–75.

  9. 9.

    Mojzis P, Kukuckova L, Majerova K, Liehneova K, Piñero DP. Comparative analysis of the visual performance after cataract surgery with implantation of a bifocal or trifocal diffractive IOL. J Refract Surg. 2014;30:666–72.

  10. 10.

    Jonker SMR, Bauer NJC, Makhotkina NY, Berendshot TTJM, van den Biggelaar FJHM, Nuijts RMMA. Comparison of a trifocal intraocular lens with a +3.0 D bifocal IOL: results of a prospective randomized clinical trial. J Cataract Refract Surg. 2015;41:1631–40.

  11. 11.

    Esteve-Taboada JJ, Domínguez-Vicent A, Del Águila-Carrasco AJ, Ferrer-Blasco T, Montés-Micó R. Effect of large apertures on the optical quality of three multifocal lenses. J Refract Surg. 2015;31:666–72.

  12. 12.

    Domínguez-Vicent A, Esteve-Taboada JJ, Del Águila-Carrasco AJ, Monsalvez-Romin D, Montés-Micó R. In vitro optical quality comparison of 2 trifocal intraocular lenses and 1 progressive multifocal intraocular lens. J Cataract Refract Surg. 2016;42:138–47.

  13. 13.

    Domínguez-Vicent A, Esteve-Taboada JJ, Del Águila-Carrasco AJ, Ferrer-Blasco T, Montés-Micó R. In vitro optical quality comparison between the Mini Well Ready progressive multifocal and the Tecnis Symfony. Graefes Arch Clin Exp Ophthalmol. 2016;254:1387–97.

  14. 14.

    Bellucci R, Curatolo MC. A new extended depth of focus intraocular lens based on spherical aberration. J Refract Surg. 2017;33:389–94.

  15. 15.

    Savini G, Schiano-Lomoriello D, Balducci N, Barboni P. Visual performance of a new extended depth-of-focus intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. J Refract Surg. 2018;34:228–35.

  16. 16.

    Camps VJ, Tolosa A, Pinero DP, de Fez D, Caballero MT, Miret JJ. In vitro aberrometric assessment of a multifocal intraocular lens and two extended depth of focus IOLs. J Ophthalmol. 2017;2017:7095734.

  17. 17.

    Calossi A, Boccardo L, Fossetti A, Radner W. Design of short Italian sentences to assess near vision performance. J Optom. 2014;7:203–9.

  18. 18.

    Radner W, Radner S, Raunig V, Diendorfer G. Reading performance of monofocal pseudophakic patients with and without glasses under normal and lim light conditions. J Cataract Refract Surg. 2014;40:369–75.

  19. 19.

    Maaijwee K, Mulder P, Radner W, Van Meurs JC. Reliability Testing of the dutch version of the Radner reading. Optom Vis Sci. 2008;85:353–8.

  20. 20.

    Pepose JS, Qazi MA, Chu R, Stahl J. A prospective randomized clinical evaluation of 3 presbyopia-correcting intraocular lenses after cataract extraction. Am J Ophthalmol. 2014;158:436–46.

  21. 21.

    Malandrini A, Martone G, Menabuoni L, Catanese AM, Tosi GM, Balestrazzi A, et al. Bifocal refractive corneal inlay implantation to improve near vision in emmetropic presbyopic patients. J Cataract Refract Surg. 2015;41:1962–72.

  22. 22.

    Pomerance GN, Evans DW. Test-retest reliability of the CSV-1000E contrast test and its relationship to glaucoma therapy. Invest Ophthalmol Vis Sci. 1994;35:3357–61.

  23. 23.

    Gutiérrez R, Jiménez JR, Villa C, Valverde JA, Anera RG. Simple device for quantifying the influence of halos after lasik surgery. J Biomed Opt. 2003;8:663–7.

  24. 24.

    Castro JJ, Jiménez JR, Ortiz C, Alarcón A, Anera RG. New testing software for quantifying discrimination capacity in subjects with ocular pathologies. J Biomed Opt. 2011;16:015001.

  25. 25.

    Villa C, Jiménez JR, Anera RG, Gutiérrez R, Hita E. Visual performance after LASIK for a Q-optimized and a standard ablation algorithm. Appl Opt. 2009;48:5741–5477.

  26. 26.

    McAlinden C, Pesudovs K, Moore JE. The development on an instrument to measure quality of vision: the Quality of Vision (QoV) questionnaire. Invest Ophthalmol Vis Sci. 2010;51:5537–45.

  27. 27.

    Whittaker SG, Lovie-Kitchin J. Visual requirements for reading. Optom Vis Sci. 1993;70:54–65.

  28. 28.

    Kamiya K, Hayashi K, Shimizu K, Negishi K, Sato M, Bissen-Miyajima H. Survey Working Group of the Japanese Society of Cataract and Refractive Surgery. Multifocal intraocular lens explantation: a case series of 50 eyes. Am J Ophthalmol. 2014;158:215–20.

  29. 29.

    Muñoz G, Albarrán-Diego C, Ferrer-Blasco T, Sakla HF, GarcÍa-Lázaro S. Visual function after bilateral implantation of a new zonal refractive aspheric multifocal intraocular lens. J Cataract Refract Surg. 2011;37:2043–52.

  30. 30.

    Hayashi K, Manabe S, Hayashi H. Visual acuity from far to near and contrast sensitivity in eyes with a diffractive multifocal intraocular lens with a low addition power. J Cataract Refract Surg. 2009;35:2070–1076.

  31. 31.

    Mendicute J, Kapp A, Lévy P, Krommes G, Arias-Puente A, Tomalla M, et al. Evaluation of visual outcomes and patient satisfaction after implantation of a diffractive trifocal intraocular lens. J Cataract Refract Surg. 2016;42:203–10.

  32. 32.

    Carballo-Arvalez J, Vasquez-Molini JM, Sanz-Fernandez J, Garcia-Bella J, Polo V, Garcia-Feijoo J, et al. Visual outcomes after bilateral trifocal diffractive intraocular lens implantation. BMC Ophthalmol. 2015;15:26.

Download references

Acknowledgements

The contribution of IRCCS – Fondazione Bietti was supported by Fondazione Roma and the Italian Ministry of Health.

Author information

Correspondence to Giovanni Alessio.

Ethics declarations

Conflict of interest

GS and RB are consultants of SIFI.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savini, G., Balducci, N., Carbonara, C. et al. Functional assessment of a new extended depth-of-focus intraocular lens. Eye 33, 404–410 (2019). https://doi.org/10.1038/s41433-018-0221-1

Download citation

Further reading