Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of calcium in the prevention of erosive tooth wear: a systematic review and meta-analysis

Abstract

Objectives

The loss of hard dental tissue due to recurrent acid challenges and mechanical stresses without bacterial involvement is known as erosive tooth wear (ETW). Many studies in the literature have concentrated on variables that may affect the ETW process and prevent its occurrence or reduce its advancement. However, to date, no previous systematic review has evaluated the role of calcium in preventing ETW. Therefore, the purpose of the present systematic review was to review and critically appraise the scientific evidence regarding the role of calcium formulations in the prevention of ETW.

Methods

The review protocol was registered in the PROSPERO international prospective register of systematic reviews (Ref: CRD42021229819). A literature search was conducted in electronic databases to identify in situ randomized controlled trials evaluating the prevention of ETW following the application of calcium formulations. The outcomes studied included mean enamel loss, surface microhardness, surface roughness, mean erosion/softening depth, mineral loss/precipitation and remineralization. Study characteristics and outcomes of included studies were summarized. Cochrane’s risk-of-bias tool 2.0 was used to assess the quality of eligible studies, and meta-analysis using a random effects model was performed.

Results

The search retrieved 869 studies of which 21 were considered eligible. Regarding the results of the quality assessment for potential risk of bias in all included studies, overall, 5 studies were considered as being at low risk, another 12 at unclear risk and 4 at high risk of bias. The findings of the studies showed that the addition of calcium in juice drinks led to reduced enamel loss, with blackcurrant juice presenting 2.6 times statistically significant less enamel loss compared to orange juice (p = 0.0001, I2 = 89%). No statistically significant difference in mean surface microhardness of eroded enamel was recorded between chewing gum with or without casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) (p = 0.31, I2 = 71%). Contradictory were the results regarding the effect of milk and CPP-ACP pastes on prevention of ETW.

Conclusions

Calcium formulations play an important role in ETW prevention, mainly through their addition to acidic drinks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Lussi A, Buzalaf MAR, Duangthip D, Anttonen V, Ganss C, João-Souza SH, et al. The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents. Eur Arch Paediatr Dent. 2019;20:517–27.

    Article  CAS  PubMed  Google Scholar 

  2. Jaeggi T, Lussi A. Prevalence, incidence and distribution of erosion. Monogr Oral Sci. 2014;25:55–73.

    Article  PubMed  Google Scholar 

  3. Salas MMS, Nascimento GG, Huysmans MC, Demarco FF. Estimated prevalence of erosive tooth wear in permanent teeth of children and adolescents: an epidemiological systematic review and meta-regression analysis. J Dent. 2015;43:42–50.

    Article  CAS  PubMed  Google Scholar 

  4. Lussi A, Carvalho TS. Erosive tooth wear: a multifactorial condition of growing concern and increasing knowledge. Monogr Oral Sci. 2014;25:1–15.

    Article  PubMed  Google Scholar 

  5. Pace F, Pallotta S, Tonini M, Vakil N, Bianchi Porro G. Systematic review: gastro-oesophageal reflux disease and dental lesions. Aliment Pharmacol Ther. 2008;27:1179–86.

    Article  CAS  PubMed  Google Scholar 

  6. Joiner A, Schafer F, Naeeni MM, Gupta AK, Zero DT. Remineralisation effect of a dual-phase calcium silicate/phosphate gel combined with calcium silicate/phosphate toothpaste on acid-challenged enamel in situ. J Dent. 2014;42(Suppl 1):S53–9.

    Article  CAS  PubMed  Google Scholar 

  7. Ganss C, Lussi A, Schlueter N. Dental erosion as oral disease. Insights in etiological factors and pathomechanisms, and current strategies for prevention and therapy. Am J Dent. 2012;25:351–64.

    PubMed  Google Scholar 

  8. Lussi A, Schlueter N, Rakhmatullina E, Ganss C. Dental erosion–an overview with emphasis on chemical and histopathological aspects. Caries Res. 2011;45:2–12.

    Article  PubMed  Google Scholar 

  9. Bartlett D. Etiology and prevention of acid erosion. Compend Contin Educ Dent. 2009;30:616–20.

    PubMed  Google Scholar 

  10. Carvalho TS, Lussi A, Jaeggi T, Gambon DL. Erosive tooth wear in children. Monogr Oral Sci. 2014;25:262–78.

    Article  PubMed  Google Scholar 

  11. Levy FM, Magalhães AC, Gomes MF, Comar LP, Rios D, Buzalaf MAR. The erosion and abrasion-inhibiting effect of TiF(4) and NaF varnishes and solutions on enamel in vitro. Int J Paediatr Dent. 2012;22:11–6.

    Article  PubMed  Google Scholar 

  12. Ramos-Oliveira TM, Ramos TM, Esteves-Oliveira M, Apel C, Fischer H, Eduardo Cde P, et al. Potential of CO2 lasers (10.6 microm) associated with fluorides in inhibiting human enamel erosion. Braz Oral Res. 2014;28:1–6.

    Article  PubMed  Google Scholar 

  13. Assuncao CM, Lussi A, Rodrigues JA, Carvalho TS. Efficacy of toothpastes in the prevention of erosive tooth wear in permanent and deciduous teeth. Clin Oral Investig. 2019;23:273–84.

    Article  PubMed  Google Scholar 

  14. Lussi A, Carvalho TS. The future of fluorides and other protective agents in erosion prevention. Caries Res. 2015;49(Suppl 1):18–29.

    Article  CAS  PubMed  Google Scholar 

  15. Buzalaf MAR, Magalhaes AC, Wiegand A. Alternatives to fluoride in the prevention and treatment of dental erosion. Monogr Oral Sci. 2014;25:244–52.

    Article  PubMed  Google Scholar 

  16. Zini A, Krivoroutski Y, Vered Y. Primary prevention of dental erosion by calcium and fluoride: a systematic review. Int J Dent Hyg. 2014;12:17–24.

    Article  CAS  PubMed  Google Scholar 

  17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

    Article  PubMed  Google Scholar 

  21. Hughes JA, West NX, Parker DM, Newcombe RG, Addy M. Development and evaluation of a low erosive blackcurrant juice drink in vitro and in situ. 1. Comparison with orange juice. J Dent. 1999;27:285–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hughes JA, West NX, Parker DM, Newcombe RG, Addy M. Development and evaluation of a low erosive blackcurrant juice drink. 3. Final drink and concentrate, formulae comparisons in situ and overview of the concept. J Dent. 1999;27:345–50.

    Article  CAS  PubMed  Google Scholar 

  23. West NX, Hughes JA, Parker DM, Newcombe RG, Addy M. Development and evaluation of a low erosive blackcurrant juice drink. 2. Comparison with a conventional blackcurrant juice drink and orange juice. J Dent. 1999;27:341–4.

    Article  CAS  PubMed  Google Scholar 

  24. Hughes JA, Jandt KD, Baker N, Parker D, Newcombe RG, Eisenburger M, Addy M. Further modification to soft drinks to minimise erosion. A study in situ. Caries Res. 2002;36:70–4.

    Article  CAS  PubMed  Google Scholar 

  25. West NX, Hughes JA, Parker DM, Moohan M, Addy M. Development of low erosive carbonated fruit drinks. 2. Evaluation of an experimental carbonated blackcurrant drink compared to a conventional carbonated drink. J Dent. 2003;31:361–5.

    Article  CAS  PubMed  Google Scholar 

  26. West NX, Hughes JA, Parker D, Weaver LJ, Moohan M, De'Ath J, Addy M. Modification of soft drinks with xanthan gum to minimise erosion: a study in situ. Br Dent J. 2004;196:478–81. discussion 467.

    Article  CAS  PubMed  Google Scholar 

  27. Hooper S, West NX, Sharif N, Smith S, North M, De'Ath J, et al. A comparison of enamel erosion by a new sports drink compared to two proprietary products: a controlled, crossover study in situ. J Dent. 2004;32:541–5.

    Article  CAS  PubMed  Google Scholar 

  28. Hooper S, Hughes J, Parker D, Finke M, Newcombe RG, Addy M, West N. A clinical study in situ to assess the effect of a food approved polymer on the erosion potential of drinks. J Dent. 2007;35:541–6.

    Article  CAS  PubMed  Google Scholar 

  29. Turssi CP, Hara AT, Amaral FLB, Franca FMG, Basting RT. Calcium lactate pre-rinse increased fluoride protection against enamel erosion in a randomized controlled in situ trial. J Dent. 2014;42:534–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wiegand A, Attin T. Randomised in situ trial on the effect of milk and CPP-ACP on dental erosion. J Dent. 2014;42:1210–5.

    Article  CAS  PubMed  Google Scholar 

  31. de Oliveira AFB, de Oliveira Diniz LV, Forte FDS, Sampaio FC, Ccahuana-Vásquez RA, Tochukwu Amaechi B. In situ effect of a {CPP}-{ACP} chewing gum on enamel erosion associated or not with abrasion. Clin Oral Investig. 2017;21:339–46.

    Article  PubMed  Google Scholar 

  32. Ionta FQ, Dos Santos NM, Mesquita IM, Dionísio EJ, Cruvinel T, Honório HM, Rios D. Is the dentifrice containing calcium silicate, sodium phosphate, and fluoride able to protect enamel against chemical mechanical wear? An in situ/ex vivo study. Clin Oral Investig. 2019;23:3713–20.

    Article  PubMed  Google Scholar 

  33. Prestes L, Souza BM, Comar LP, Salomao PA, Rios D, Magalhaes AC. In situ effect of chewing gum containing CPP-ACP on the mineral precipitation of eroded bovine enamel-a surface hardness analysis. J Dent. 2013;41:747–51.

    Article  CAS  PubMed  Google Scholar 

  34. de Alencar CRB, Magalhaes AC, de Andrade Moreira Machado MA, de Oliveira TM, Honorio HM, Rios D. In situ effect of a commercial CPP-ACP chewing gum on the human enamel initial erosion. J Dent. 2014;42:1502–7.

    Article  PubMed  Google Scholar 

  35. Jordão MC, Alencar CR, Mesquita IM, Buzalaf MA, Magalhães AC, Machado MA, et al. In situ effect of chewing gum with and without CPP-ACP on enamel surface hardness subsequent to ex vivo acid challenge. Caries Res. 2016;50:325–30.

    Article  PubMed  Google Scholar 

  36. Yu H, Jiang N-W, Ye X-Y, Zheng H-Y, Attin T, Cheng H. In situ effect of Tooth Mousse containing CPP-ACP on human enamel subjected to in vivo acid attacks. J Dent. 2018;76:40–5.

    Article  CAS  PubMed  Google Scholar 

  37. Zawaideh FI, Owais AI, Mushtaha S. Effect of CPP-ACP or a potassium nitrate sodium fluoride dentifrice on enamel erosion prevention. J Clin Pediatr Dent. 2017;41:135–40.

    Article  CAS  PubMed  Google Scholar 

  38. Wegehaupt FJ, Taubock TT, Stillhard A, Schmidlin PR, Attin T. Influence of extra- and intra-oral application of CPP-ACP and fluoride on re-hardening of eroded enamel. Acta Odontol Scand. 2012;70:177–83.

    Article  CAS  PubMed  Google Scholar 

  39. Scaramucci T, Sobral MAP, Eckert GJ, Zero DT, Hara AT. In situ evaluation of the erosive potential of orange juice modified by food additives. Caries Res. 2012;46:55–61.

    Article  CAS  PubMed  Google Scholar 

  40. Cai F, Manton DJ, Shen P, Walker GD, Cross KJ, Yuan Y, et al. Effect of addition of citric acid and casein phosphopeptide-amorphous calcium phosphate to a sugar-free chewing gum on enamel remineralization in situ. Caries Res. 2007;41:377–83.

    Article  CAS  PubMed  Google Scholar 

  41. Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A. Methodology and models in erosion research: discussion and conclusions. Caries Res. 2011;45(Suppl 1):69–77.

    Article  PubMed  Google Scholar 

  42. Voronets J, Lussi A. Thickness of softened human enamel removed by toothbrush abrasion: an in vitro study. Clin Oral Investig. 2010;14:251–6.

    Article  CAS  PubMed  Google Scholar 

  43. Ganss C, Lussi A, Schlueter N. The histological features and physical properties of eroded dental hard tissues. Monogr Oral Sci. 2014;25:99–107.

    Article  PubMed  Google Scholar 

  44. Abdullah AZ, Ireland AJ, Sandy JR, Barbour ME. A nanomechanical investigation of three putative anti-erosion agents: remineralisation and protection against demineralisation. Int J Dent. 2012;2012:768126.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rios D, Magalhaes AC, Polo ROB, Wiegand A, Attin T, Buzalaf MAR. The efficacy of a highly concentrated fluoride dentifrice on bovine enamel subjected to erosion and abrasion. J Am Dent Assoc. 2008;139:1652–6.

    Article  PubMed  Google Scholar 

  46. Lussi A, Megert B, Eggenberger D, Jaeggi T. Impact of different toothpastes on the prevention of erosion. Caries Res. 2008;42:62–7.

    Article  CAS  PubMed  Google Scholar 

  47. Sun Y, Li X, Deng Y, Sun JN, Tao D, Chen H. et al. Mode of action studies on the formation of enamel minerals from a novel toothpaste containing calcium silicate and sodium phosphate salts. J Dent. 2014;42(Suppl 1):S30–8.

    Article  CAS  PubMed  Google Scholar 

  48. Parker AS, Patel AN, Al Botros R, Snowden ME, McKelvey K, Unwin PR. et al. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel. J Dent. 2014;42(Suppl 1):S21–9.

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Megert B, Hellwig E, Neuhaus KW, Lussi A. Preventing erosion with novel agents. J Dent. 2011;39:163–70.

    Article  CAS  PubMed  Google Scholar 

  50. Wegehaupt FJ, Attin T. The role of fluoride and casein phosphopeptide/amorphous calcium phosphate in the prevention of erosive/abrasive wear in an in vitro model using hydrochloric acid. Caries Res. 2010;44:358–63.

    Article  CAS  PubMed  Google Scholar 

  51. Ranjitkar S, Rodriguez JM, Kaidonis JA, Richards LC, Townsend GC, Bartlett DW. The effect of casein phosphopeptide-amorphous calcium phosphate on erosive enamel and dentine wear by toothbrush abrasion. J Dent. 2009;37:250–4.

    Article  CAS  PubMed  Google Scholar 

  52. Ceci M, Mirando M, Beltrami R, Chiesa M, Poggio C. Protective effect of casein phosphopeptide-amorphous calcium phosphate on enamel erosion: atomic force microscopy studies. Scanning. 2015;37:327–34.

    Article  CAS  PubMed  Google Scholar 

  53. Reynolds EC. Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: a review. Spec Care Dent. 1998;18:8–16.

    Article  CAS  Google Scholar 

  54. Shellis RP, Featherstone JDB, Lussi A. Understanding the chemistry of dental erosion. Monogr Oral Sci. 2014;25:163–79.

    Article  PubMed  Google Scholar 

  55. Shellis RP, Addy M. The interactions between attrition, abrasion and erosion in tooth wear. Monogr Oral Sci. 2014;25:32–45.

    Article  PubMed  Google Scholar 

  56. Lussi A. Dental erosion–novel remineralizing agents in prevention or repair. Adv Dent Res. 2009;21:13–6.

    Article  CAS  PubMed  Google Scholar 

  57. Huysmans M-C, Young A, Ganss C. The role of fluoride in erosion therapy. Monogr Oral Sci. 2014;25:230–43.

    Article  PubMed  Google Scholar 

  58. Hooper SM, Newcombe RG, Faller R, Eversole S, Addy M, West NX. The protective effects of toothpaste against erosion by orange juice: studies in situ and in vitro. J Dent. 2007;35:476–81.

    Article  CAS  PubMed  Google Scholar 

  59. Barbour ME, Shellis RP, Parker DM, Allen GC, Addy M. An investigation of some food-approved polymers as agents to inhibit hydroxyapatite dissolution. Eur J Oral Sci. 2005;113:457–61.

    Article  CAS  PubMed  Google Scholar 

  60. Hesaraki S, Zamanian A, Moztarzadeh F. Effect of adding sodium hexametaphosphate liquefier on basic properties of calcium phosphate cements. J Biomed Mater Res A. 2009;88:314–21.

    Article  CAS  PubMed  Google Scholar 

  61. West NX, Davies M, Amaechi BT. In vitro and in situ erosion models for evaluating tooth substance loss. Caries Res. 2011;45(Suppl 1):43–52.

    Article  PubMed  Google Scholar 

  62. Hooper S, West NX, Pickles MJ, Joiner A, Newcombe RG, Addy M. Investigation of erosion and abrasion on enamel and dentine: a model in situ using toothpastes of different abrasivity. J Clin Periodontol. 2003;30:802–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CK: conceptualization, methodology, investigation, formal analysis, writing—original draft, visualization. SK: conceptualization, methodology, investigation, formal analysis, writing—review and editing. KD: conceptualization, methodology, investigation, formal analysis, writing—review and editing, visualization. GS: conceptualization, methodology, formal analysis, writing—review and editing. PW: conceptualization, methodology, investigation, formal analysis, writing—review and editing, supervision.

Corresponding author

Correspondence to Konstantina Chatzidimitriou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzidimitriou, K., Seremidi, K., Kloukos, D. et al. The role of calcium in the prevention of erosive tooth wear: a systematic review and meta-analysis. Evid Based Dent 25, 55 (2024). https://doi.org/10.1038/s41432-023-00966-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41432-023-00966-5

This article is cited by

Search

Quick links