Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of variants in GJA8 with familial acorea-microphthalmia-cataract syndrome

Abstract

Congenital acorea is a rare disease with the absence of a pupil in the eye. To date, only one family and two isolated cases with congenital acorea have been reported. The gene associated with acorea has not been identified. In this study, we recruited a Chinese family acorea-microphthalmia-cataract syndrome. By analyzing the whole-exome sequencing (WES) data of this Chinese family, we revealed the association of a novel heterozygous variant, NM_005267.5:c.137G>A (p.G46E) in the gap junction protein alpha 8 (GJA8) gene encoding connexin 50 or CX50, with familial acorea-microphthalmia-cataract syndrome. Additionally, another variant, NM_005267.5:c.151G>A (p.D51N) in GJA8, was identified to co-segregate with this syndrome in an unrelated Japanese family. Ectopic expression of p.G46E and p.D51N mutant GJA8 genes in cultured cells caused protein mislocalization, suggesting that the p.G46E and p.D51N mutations in GJA8 impaired the function of the gap junction channels. These results established GJA8 as the first gene associated with familial acorea-microphthalmia-cataract syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pedigrees of the Chinese and Japanese families with congenital acorea, microphthalmia, and cataract syndrome.
Fig. 2: Slit-lamp photographs, B-scan ultrasonography, fundus photography, and ultrasound biomicroscopy.
Fig. 3: Validation of the variant in GJA8 by Sanger sequencing.
Fig. 4: In silico analysis.
Fig. 5: Mislocalization of mutant GJA8s expressed in HLECs.

Similar content being viewed by others

Data availability

The genetic variants of GJA8 identified in this study have been submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/). The accession numbers for G46E and D51N are SCV003920679 and SCV004011733, respectively. All other data are available within the article or upon reasonable request.

References

  1. Graw J. Eye development. Curr Top Dev Biol. 2010;90:343–86.

    Article  PubMed  Google Scholar 

  2. Shah SP, Taylor AE, Sowden JC, Ragge NK, Russell-Eggitt I, Rahi JS, et al. Anophthalmos, microphthalmos, and typical coloboma in the United Kingdom: a prospective study of incidence and risk. Investig Ophthalmol Vis Sci. 2011;52:558–64.

    Article  Google Scholar 

  3. Richardson R, Sowden J, Gerth-Kahlert C, Moore AT, Moosajee M. Clinical utility gene card for: non-syndromic microphthalmia including next-generation sequencing-based approaches. Eur J Hum Genet. 2017;25:512.

  4. Reis LM, Semina EV. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma. Birth Defects Res C Embryo Today. 2015;105:96–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ceroni, Aguilera-Garcia F, Chassaing D, Bax DA N, Blanco-Kelly F, Ramos P, et al. New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies. Hum Genet. 2019;138:1027–42.

    Article  CAS  PubMed  Google Scholar 

  6. Gillespie RL, O’Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology. 2014;121:2124–37. e2121-2122.

    Article  PubMed  Google Scholar 

  7. Koval M. Pathways and control of connexin oligomerization. Trends Cell Biol. 2006;16:159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pfenniger A, Wohlwend A, Kwak BR. Mutations in connexin genes and disease. Eur J Clin Investig. 2011;41:103–16.

    Article  CAS  Google Scholar 

  9. Rouillac C, Roche O, Marchant D, Bachner L, Kobetz A, Toulemont PJ, et al. Mapping of a congenital microcoria locus to 13q31-q32. Am J Hum Genet. 1998;62:1117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tawara A, Inomata H. Familial cases of congenital microcoria associated with late onset congenital glaucoma and goniodysgenesis. Jpn J Ophthalmol. 1983;27:63–72.

    CAS  PubMed  Google Scholar 

  11. Ramprasad VL, Sripriya S, Ronnie G, Nancarrow D, Saxena S, Hemamalini A, et al. Genetic homogeneity for inherited congenital microcoria loci in an Asian Indian pedigree. Mol Vis. 2005;11:934–40.

    CAS  PubMed  Google Scholar 

  12. Fares-Taie L, Gerber S, Tawara A, Ramirez-Miranda A, Douet JY, Verdin H, et al. Submicroscopic deletions at 13q32.1 cause congenital microcoria. Am J Hum Genet. 2015;96:631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kondo H, Tahira T, Yamamoto K, Tawara A. Familial acorea, microphthalmia and cataract syndrome. Br J Ophthalmol. 2013;97:1155–60.

    Article  PubMed  Google Scholar 

  14. Ramasubramanian S, Majumder PD. Acorea: a rare congenital anomaly. Indian J Ophthalmol. 2018;66:450.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Priyambada P, Prabu RV, Wasnik RB, Ranjini H. A rare case of acorea: congenital absence of pupil. J Clin Ophthalmol Res. 2021;9:85–87.

    Article  Google Scholar 

  16. Wu X, Long E, Lin H, Liu Y. Prevalence and epidemiological characteristics of congenital cataract: a systematic review and meta-analysis. Sci Rep. 2016;6:28564.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet. 1998;62:526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma AS, Grigg JR, Ho G, Prokudin I, Farnsworth E, Holman K, et al. Sporadic and familial congenital cataracts: mutational spectrum and new diagnoses using next-generation sequencing. Hum Mutat. 2016;37:371–84.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maeda S, Tsukihara T. Structure of the gap junction channel and its implications for its biological functions. Cell Mol Life Sci. 2011;68:1115–29.

    Article  CAS  PubMed  Google Scholar 

  20. Myers JB, Haddad BG, O’Neill SE, Chorev DS, Yoshioka CC, Robinson CV, et al. Structure of native lens connexin 46/50 intercellular channels by cryo-EM. Nature. 2018;564:372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, et al. Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature. 2009;458:597–602.

    Article  CAS  PubMed  Google Scholar 

  22. Tong JJ, Minogue PJ, Guo W, Chen TL, Beyer EC, Berthoud VM, et al. Different consequences of cataract-associated mutations at adjacent positions in the first extracellular boundary of connexin50. Am J Physiol Cell Physiol. 2011;300:C1055–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun W, Xiao X, Li S, Guo X, Zhang Q. Mutational screening of six genes in Chinese patients with congenital cataract and microcornea. Mol Vis. 2011;17:1508–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fan F, Luo Y, Wu J, Gao C, Liu X, Mei H, et al. The mutation spectrum in familial versus sporadic congenital cataract based on next-generation sequencing. BMC Ophthalmol. 2020;20:361.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Azuma N, Hirakiyama A, Inoue T, Asaka A, Yamada M. Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum Mol Genet. 2000;9:363–6.

    Article  CAS  PubMed  Google Scholar 

  26. Reis LM, Tyler RC, Muheisen S, Raggio V, Salviati L, Han DP, et al. Whole exome sequencing in dominant cataract identifies a new causative factor, CRYBA2, and a variety of novel alleles in known genes. Hum Genet. 2013;132:761–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gonzalez-Huerta LM, Messina-Baas OM, Cuevas-Covarrubias SA. A family with autosomal dominant primary congenital cataract associated with a CRYGC mutation: evidence of clinical heterogeneity. Mol Vis. 2007;13:1333–8.

    CAS  PubMed  Google Scholar 

  28. Ganatra S, Kekunnaya R, Sachdeva V. Bilateral congenital membranous cataracts due to Glucosaminyl (N-Acetyl) Transferase 2 (GCNT2) mutation: Life-saving genetic analysis. Indian J Ophthalmol. 2022;70:2622–3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Church RL, Wang JH, Steele E. The human lens intrinsic membrane protein MP70 (Cx50) gene: clonal analysis and chromosome mapping. Curr Eye Res. 1995;14:979–81.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar NM, Gilula NB. Molecular biology and genetics of gap junction channels. Semin Cell Biol. 1992;3:3–16.

    Article  CAS  PubMed  Google Scholar 

  31. Rong P, Wang X, Niesman I, Wu Y, Benedetti LE, Dunia I, et al. Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development. 2002;129:167–74.

    Article  CAS  PubMed  Google Scholar 

  32. Arora A, Minogue PJ, Liu X, Addison PK, Russel-Eggitt I, Webster AR, et al. A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet. 2008;45:155–60.

    Article  CAS  PubMed  Google Scholar 

  33. Banks EA, Toloue MM, Shi Q, Zhou ZJ, Liu J, Nicholson BJ, et al. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. J Cell Sci. 2009;122:378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rubinos C, Villone K, Mhaske PV, White TW, Srinivas M. Functional effects of Cx50 mutations associated with congenital cataracts. Am J Physiol Cell Physiol. 2014;306:C212–220.

    Article  CAS  PubMed  Google Scholar 

  35. Tong X, Aoyama H, Tsukihara T, Bai D. Charge at the 46th residue of connexin 50 is crucial for the gap-junctional unitary conductance and transjunctional voltage-dependent gating. J Physiol. 2014;592:5187–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mese G, Sellitto C, Li L, Wang HZ, Valiunas V, Richard G, et al. The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome. Mol Biol Cell. 2011;22:4776–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK. Pore-lining residues identified by single channel SCAM studies in Cx46 hemichannels. Cell Commun Adhes. 2003;10:193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanchez HA, Villone K, Srinivas M, Verselis VK. The D50N mutation and syndromic deafness: altered Cx26 hemichannel properties caused by effects on the pore and intersubunit interactions. J Gen Physiol. 2013;142:3–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez W, Ramachandran J, Alsamarah A, Luo Y, Harris AL, Contreras JE. Mechanism of gating by calcium in connexin hemichannels. Proc Natl Acad Sci USA. 2016;113:E7986–E7995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Zou T, Lin Y, Li L, Zhang P, Gong B, et al. Identification of a novel homozygous variant in the CNGA1 gene in a Chinese family with autosomal recessive retinitis pigmentosa. Mol Med Rep. 2020;22:2516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants in this study.

Funding

The National Natural Science Foundation of China (nos. 81770935 (HZ), 82371059 (HZ), 81800830 (SD)), the grant from the Department of Science and Technology of Sichuan Province, China (nos. 2023JDZH0002 (HZ), 2022JDTD0024 (BG)), the Chengdu Science and Technology Bureau (no. 2022-YF05-01984-SN (HZ)), Young and Middle-aged Health Science and Technology Innovation Talent Training Project (Outstanding Young Persons) of Henan Province (no. YXKC2022025) (SD), Medical Science and Technology Project (the Key Project Jointly Built by the Province and the Ministry) of Henan Province (no. SBGJ202102167, (SD)), and the Key Research and Development and Promotion Project (Science and Technology) program of Henan Province (no. 192102310077 (SD)).

Author information

Authors and Affiliations

Authors

Contributions

SD, WZ, and QL recruited the Chinese participants. TZ, FZ, TW, and JW performed sequencing, vector construction, and cell culture, and analyzed the data. TN, IM, HK recruited the Japanese participants, performed the experiments and analyzed the data. SD, GB, QL, and HZ designed the experiments, and analyzed the data. QL and HZ supervised the project. TZ and HZ wrote the manuscript.

Corresponding authors

Correspondence to Qiuming Li or Houbin Zhang.

Ethics declarations

Ethical

This study complied with the requirements of the Declaration of Helsinki, and was approved by ethics committees of all participating institutions, including the First Affiliated Hospital of Zhengzhou University, China; Sichuan Provincial People’s Hospital, China; and the University of Occupational and Environmental Health, Japan. Written informed consent for publication of details and images was obtained from all the participants or their guardians.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Zou, T., Zhen, F. et al. Association of variants in GJA8 with familial acorea-microphthalmia-cataract syndrome. Eur J Hum Genet 32, 413–420 (2024). https://doi.org/10.1038/s41431-023-01503-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-023-01503-9

This article is cited by

Search

Quick links