Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Population screening for 15q11-q13 duplications: corroboration of the difference in impact between maternally and paternally inherited alleles

Abstract

Maternally inherited 15q11-q13 duplications are generally found to cause more severe neurodevelopmental anomalies compared to paternally inherited duplications. However, this assessment is mainly inferred from the study of patient populations, causing an ascertainment bias towards patients at the more severe end of the phenotypic spectrum. Here, we analyze the low coverage genome-wide cell-free DNA sequencing data obtained from pregnant women during non-invasive prenatal screening (NIPS). We detect 23 15q11-q13 duplications in 333,187 pregnant women (0.0069%), with an approximately equal distribution between maternal and paternal duplications. Maternally inherited duplications are always associated with a clinical phenotype (ranging from learning difficulties to intellectual impairment, epilepsy and psychiatric disorders), while paternal duplications are normal or associated with milder phenotypes (mild learning difficulties and dyslexia). This data corroborates the difference in impact between paternally and maternally inherited 15q11-q13 duplications, contributing to the improvement of genetic counselling. We recommend reporting 15q11-q13 duplications identified during genome-wide NIPS with appropriate genetic counselling for these pregnant women in the interest of both mothers and future children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genomic representation of the 15q11-q13 region.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request and within ethical constraints.

References

  1. Bianchi DW, Chiu RWK. Sequencing of circulating cell-free DNA during pregnancy. N. Engl J Med. 2018;379:464–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vermeesch JR, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet. 2016;17:643–56.

    Article  CAS  PubMed  Google Scholar 

  3. Pertile MD, Halks-Miller M, Flowers N, Barbacioru C, Kinnings SL, Vavrek D, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci Transl Med. 2017;9:eaan1240.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Van Opstal D, Van Maarle MC, Lichtenbelt K, Weiss MM, Schuring-Blom H, Bhola SL, et al. Origin and clinical relevance of chromosomal aberrations other than the common trisomies detected by genome-wide NIPS: Results of the TRIDENT study. Genet Med. 2018;20:480–5.

    Article  PubMed  Google Scholar 

  5. van der Meij KRM, Sistermans EA, Macville MVE, Stevens SJC, Bax CJ, Bekker MN, et al. TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands. Am J Hum Genet. 2019;105:1091–101.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brison N, Neofytou M, Dehaspe L, Bayindir B, Van Den Bogaert K, Dardour L, et al. Predicting fetoplacental chromosomal mosaicism during non-invasive prenatal testing. Prenat Diagn. 2018;38:258–66.

    Article  CAS  PubMed  Google Scholar 

  7. Brison N, Van Den Bogaert K, Dehaspe L, Van Den Oever JME, Janssens K, Blaumeiser B, et al. Accuracy and clinical value of maternal incidental findings during noninvasive prenatal testing for fetal aneuploidies. Genet Med. 2017;19:306–13.

    Article  CAS  PubMed  Google Scholar 

  8. Li R, Wan J, Zhang Y, Fu F, Ou Y, Jing X, et al. Detection of fetal copy number variants by non-invasive prenatal testing for common aneuploidies. Ultrasound Obstet Gynecol. 2016;47:53–57.

    Article  CAS  PubMed  Google Scholar 

  9. Brison N, Storms J, Villela D, Claeys KG, Dehaspe L, de Ravel T, et al. Maternal copy-number variations in the DMD gene as secondary findings in noninvasive prenatal screening. Genet Med. 2019;21:2774–80.

    Article  PubMed  Google Scholar 

  10. Van Den Bogaert K, Lannoo L, Brison N, Gatinois V, Baetens M, Blaumeiser B, et al. Outcome of publicly funded nationwide first-tier noninvasive prenatal screening. Genet Med. 2021;23:1137–42.

    Article  PubMed  Google Scholar 

  11. Kalsner L, Chamberlain SJ. Prader-Willi, Angelman, and 15q11-q13 Duplication Syndromes. Pediatr Clin North Am. 2015;62:587–606.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Butler MG. Imprinting disorders in humans: a review. Curr Opin Pediatr. 2020;32:719–29.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aypar U, Brodersen PR, Lundquist PA, Brian Dawson D, Thorland EC, Hoppman N. Does parent of origin matter? Methylation studies should be performed on patients with multiple copies of the prader-willi/angelman syndrome critical region. Am J Med Genet Part A. 2014;164:2514–20.

    Article  CAS  Google Scholar 

  14. Lusk L, Vogel-Farley V, Distefano C, Jeste S. Maternal 15q Duplication Syndrome In: Adam MP, Mirzaa GM, Pagon RA, et al., editors. GeneReviews®. Seattle, WA: University of Washington. 1993–2023 [Updated 2021 Jul 15]. 2016. https://www.ncbi.nlm.nih.gov/books/NBK367946/.

  15. Beghi E, Giussani G, Bianchi E, Randazzo G, Sarcona V, Elia M, et al. A validation study of the clinical diagnosis of Dup15q syndrome: Which symptoms matter most? Seizure 2020;74:26–30.

    Article  CAS  PubMed  Google Scholar 

  16. Battaglia A. The inv dup(15) or idic(15) syndrome: A clinically recognisable neurogenetic disorder. Brain Dev. 2005;27:365–9.

    Article  PubMed  Google Scholar 

  17. Piard J, Philippe C, Marvier M, Beneteau C, Roth V, Valduga M, et al. Clinical and molecular characterization of a large family with an interstitial 15q11q13 duplication. Am J Med Genet Part A. 2010;152:1933–41.

    Article  Google Scholar 

  18. Isles AR, Ingason A, Lowther C, Walters J, Gawlick M, Stöber G, et al. Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders. PLoS Genet. 2016;12:e1005993.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Urraca N, Cleary J, Brewer V, Pivnick EK, Mcvicar K, Thibert RL, et al. The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature. Autism Res. 2013;6:268–79.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Al Ageeli E, Drunat S, Delanoë C, Perrin L, Baumann C, Capri Y, et al. Duplication of the 15q11-q13 region: Clinical and genetic study of 30 new cases. Eur J Med Genet. 2014;57:5–14.

    Article  PubMed  Google Scholar 

  21. Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Villela D, Che H, Van Ghelue M, Dehaspe L, Brison N, Van Den Bogaert K, et al. Fetal sex determination in twin pregnancies using non-invasive prenatal testing. npj Genom Med. 2019;4:15.

  23. Bayindir B, Dehaspe L, Brison N, Brady P, Ardui S, Kammoun M, et al. Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management. Eur J Hum Genet. 2015;23:1286–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raman L, Dheedene A, De Smet M, Van Dorpe J, Menten B. WisecondorX: improved copy number detection for routine shallow whole-genome sequencing. Nucleic Acids Res. 2019;47:1605–14.

    Article  CAS  PubMed  Google Scholar 

  25. Straver R, Sistermans EA, Holstege H, Visser A, Oudejans CBM, Reinders MJT. WISECONDOR: Detection of fetal aberrations from shallow sequencing maternal plasma based on a within-sample comparison scheme. Nucleic Acids Res. 2014;42:e31.

    Article  CAS  PubMed  Google Scholar 

  26. Battaglia A. The inv dup (15) or idic (15) syndrome (Tetrasomy 15q). Orphanet J Rare Dis. 2008;3:1–7.

    Article  Google Scholar 

  27. Hogart A, Wu D, LaSalle JM, Schanen NC. The Comorbidity of Autism with the Genomic Disorders of Chromosome 15q11.2-q13. Neurobiol Dis. 2010;38:181–91. p.

    Article  CAS  PubMed  Google Scholar 

  28. FPS Public Health. Opinion no. 66 of 9 May 2016—non-invasive prenatal testing (NIPT). 2016 https://www.health.belgium.be/en/opinion-no-66-non-invasive-prenatal-testing-nipt (2016).

  29. Belgian Society for Human Genetics. Belgian guidelines for managing incidental findings detected by NIPT. 2021. https://www.college-genetics.be/nl/voor-de-professionele/good-practice-et-richtlijnen-voor-beroepsbeoefenaars/richtlijnen.html.

  30. DiStefano C, Wilson RB, Hyde C, Cook EH, Thibert RL, Reiter LT, et al. Behavioral characterization of dup15q syndrome: Toward meaningful endpoints for clinical trials. Am J Med Genet A. 2020;182:71–84.

Download references

Acknowledgements

We would like to thank all participating women, clinicians and laboratory staff. We also thank the Genomics Core (KU Leuven) for their sequencing and bioinformatic support.

Funding

Funding for this study is provided by the KU Leuven (C14/22/125) and the FWO-SBO-MICADO S003422.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: IP, KVDB, KD, JRV. Investigation and methodology: IP, KVDB, KD, JRV. Formal analysis: IP. Visualization: IP. Data curation: IP, NB, LV, KJ, BB, MB, SJ, BM, BD, NF, KVB, AVDB, CM, JD, SB, AM. Supervision: KVDB, KD, JRV. Writing—original draft, review, and editing: IP, KJ, MB, BM, NF, KVDB, KJ, KD, JRV.

Corresponding author

Correspondence to Joris Robert Vermeesch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study is approved by the Ethics Committee Research of University Hospitals Leuven (S66428).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parijs, I., Brison, N., Vancoillie, L. et al. Population screening for 15q11-q13 duplications: corroboration of the difference in impact between maternally and paternally inherited alleles. Eur J Hum Genet 32, 31–36 (2024). https://doi.org/10.1038/s41431-023-01336-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-023-01336-6

This article is cited by

Search

Quick links