Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

X-linked C1GALT1C1 mutation causes atypical hemolytic uremic syndrome

Abstract

Hemolytic-uremic syndrome (HUS), mostly secondary to infectious diseases, is a common cause of acute kidney injury in children. It is characterized by progressive acute kidney failure due to severe thrombotic microangiopathy, associated with nonimmune, Coombs-negative hemolytic anemia and thrombocytopenia. HUS is caused mostly by Shiga toxin-producing E. Coli, and to a lesser extent by Streptococcus pneumonia. In Streptococcus pneumonia HUS (pHUS), bacterial neuraminidase A exposes masked O-glycan sugar residues on erythrocytes, known as the T antigen, triggering a complement cascade causing thrombotic microangiopathy. Atypical HUS (aHUS) is a life-threatening genetic form of the disease, whose molecular mechanism is only partly understood. Through genetic studies, we demonstrate a novel X-linked form of aHUS that is caused by a de-novo missense mutation in C1GALT1C1:c.266 C > T,p.(T89I), encoding a T-synthase chaperone essential for the proper formation and incorporation of the T antigen on erythrocytes. We demonstrate the presence of exposed T antigen on the surface of mutant erythrocytes, causing aHUS in a mechanism similar to that suggested in pHUS. Our findings suggest that both aHUS caused by mutated C1GALT1C1 and pHUS are mediated by the lectin-complement-pathway, not comprehensively studied in aHUS. We thus delineate a shared molecular basis of aHUS and pHUS, highlighting possible therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pedigree and molecular genetics.
Fig. 2: Tn-antigen detection using flow cytometry.
Fig. 3: Hemagglutination of erythrocytes’ T-antigen.
Fig. 4: Proposed mechanism.

Data availability

Data support the findings of this study, including the WES raw data, are available from the corresponding author upon request (O.S.B) upon reasonable request.

References

  1. Mele C, Remuzzi G, Noris M. Hemolytic uremic syndrome. Semin Immunopathol. 2014;36:399–420.

    Article  CAS  Google Scholar 

  2. Nester CM, Barbour T, de Cordoba SR, Dragon-Durey MA, Fremeaux-Bacchi V, Goodship THJ, et al. Atypical aHUS: State of the art. Mol Immunol. 2015;67:31–42.

    Article  CAS  Google Scholar 

  3. Yoshida Y, Kato H, Ikeda Y, Nangaku M. Pathogenesis of Atypical Hemolytic Uremic Syndrome. J Atheroscler Thromb. 2019;26:99–110.

    Article  CAS  Google Scholar 

  4. Zuber J, Fakhouri F, Roumenina LT, Loirat C, Frémeaux-Bacchi V. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol. 2012;8:11. 2012;8:643–57

    Article  Google Scholar 

  5. Angioi A, Fervenza FC, Sethi S, Zhang Y, Smith RJ, Murray D, et al. Diagnosis of complement alternative pathway disorders. Kidney Int. 2016;89:278–88.

    Article  CAS  Google Scholar 

  6. Maga TK, Nishimura CJ, Weaver AE, Frees KL, Smith RJH. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mutat. 2010;31:E1445–60.

    Article  CAS  Google Scholar 

  7. Sridharan M, Go RS, Willrich MAV. Atypical hemolytic uremic syndrome: Review of clinical presentation, diagnosis and management. J Immunol Methods. 2018;461:15–22.

    Article  CAS  Google Scholar 

  8. Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N. Engl J Med. 2009;361:1676–87.

    Article  CAS  Google Scholar 

  9. Józsi M, Licht C, Strobel S, Zipfel SLH, Richter H, Heinen S, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood 2008;111:1512–4.

    Article  Google Scholar 

  10. Józsi M, Strobel S, Dahse HM, Liu WS, Hoyer PF, Oppermann M, et al. Anti–factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood 2007;110:1516–8.

    Article  Google Scholar 

  11. Lemaire M, Frémeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Quintrec MLE, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45:5. 2013 Mar 31;45:531–6

    Article  Google Scholar 

  12. Mele C, Lemaire M, Iatropoulos P, Piras R, Bresin E, Bettoni S, et al. Characterization of a new DGKE intronic mutation in genetically unsolved cases of familial atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2015;10:1011–9.

    Article  CAS  Google Scholar 

  13. Delvaeye M, Noris M, Vriese A de, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolytic–uremic syndrome. N Engl J Med. 2009;361:345. Available from: https://pubmed.ncbi.nlm.nih.gov/19625716/.

  14. Dahr W, Uhlenbruck G, Bird GWG. Cryptic A-like receptor sites in human erythrocyte glycoproteins: proposed nature of Tn-antigen. Vox Sang. 1974;27:29–42.

    Article  CAS  Google Scholar 

  15. Berger EG. Tn-syndrome. Biochimica et Biophysica Acta (BBA) - Mol Basis Dis. 1999;1455:255–68.

    Article  CAS  Google Scholar 

  16. Bolscher JGM, Brevoord J, Nazmi K, Ju T, Veerman ECI, Van Wijk JAE, et al. Solid-phase synthesis of a pentavalent GalNAc-containing glycopeptide (Tn antigen) representing the nephropathy-associated IgA hinge region. Carbohydr Res. 2010;345:1998–2003.

    Article  CAS  Google Scholar 

  17. Friedenreich V. Investigations into the thomsen hemagglutination phenomena. Acta Pathologica Microbiologica Scandinavica. 1928;5:59–101.

    Article  Google Scholar 

  18. Coats MT, Murphy T, Paton JC, Gray B, Briles DE. Exposure of Thomsen-Friedenreich antigen in Streptococcus pneumoniae infection is dependent on pneumococcal neuraminidase A. Micro Pathog. 2011;50:343–9.

    Article  CAS  Google Scholar 

  19. McGraw ME, Lendon M, Stevens RF, Postlethwaite RJ, Taylor CM. Haemolytic uraemic syndrome and the Thomsen Friedenreich antigen. Pediatr Nephrol. 1989;3:135–9. Available from: https://pubmed.ncbi.nlm.nih.gov/2701864/.

  20. Burin Des Roziers N, Chadebech P, Bodivit G, Guinchard E, Bruneel A, Dupré T, et al. Red blood cell Thomsen-Friedenreich antigen expression and galectin-3 plasma concentrations in Streptococcus pneumoniae-associated hemolytic uremic syndrome and hemolytic anemia. Transfusion. 2015;552:1563–71. https://pubmed.ncbi.nlm.nih.gov/25556575/.

  21. Bird GWG. Anti-T in peanuts. Vox Sang. 1964;9:748–9.

    Article  CAS  Google Scholar 

  22. Novogrodsky A, Lotan R, Ravid A, Sharon N. Peanut Agglutinin, a new mitogen that binds to galactosyl sites exposed after neuraminidase treatment. J Immunol. 1975;115:1243–8.

    Article  CAS  Google Scholar 

  23. Gómez Delgado I, Corvillo F, Nozal P, Arjona E, Madrid Á, Melgosa M, et al. Complement genetic variants and FH desialylation in S. pneumoniae-Haemolytic Uraemic Syndrome. Front Immunol. 2021;12. Available from: https://pubmed.ncbi.nlm.nih.gov/33777036/.

  24. Xia L, Ju T, Westmuckett A, An G, Ivanciu L, Mcdaniel JM, et al. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol. 2004;164:451–9.

    Article  CAS  Google Scholar 

  25. Ju T, Cummings RD. Chaperone mutation in Tn syndrome. Nature. 2005;437:7063. 2005 Oct 26;437(7063):1252–1252.

    Article  Google Scholar 

  26. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.

    Article  CAS  Google Scholar 

  27. Picard Tools - By Broad Institute. Available from: http://broadinstitute.github.io/picard/.

  28. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. bioRxiv; 2017;201178.

  29. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–2. Available from: https://pubmed.ncbi.nlm.nih.gov/26647377/.

  30. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020;581:434–43.

    Article  CAS  Google Scholar 

  31. L Phan, Y Jin, H Zhang, W Qiang, E Shekhtman, D Shao, et al. Allele Frequency Aggregator. Available from: https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/#citing-this-project.

  32. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A global reference for human genetic variation. Nature. Nature Publishing Group; 2015;526:68–74.

  33. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–7.

    Article  CAS  Google Scholar 

  34. Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing, and personalized genomic medicine. Hum Genet; 2014,133:1–9.

  35. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. 45, Nature Genetics. NIH Public Access; 2013;580–5.

  36. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science (1979). 2015;347(6220):1260419–1260419.

  37. Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al. A subcellular map of the human proteome. Science (1979). 2017;356:eaal3321.

    Article  Google Scholar 

  38. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20:110–21.

    Article  CAS  Google Scholar 

  39. Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-Splice—improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13:31.

    Article  CAS  Google Scholar 

  40. Jeanty P, Romero R, Hobbins JC. Fetal limb volume: a new parameter to assess fetal growth and nutrition. J Ultrasound Med. 1985;4:273–82. Available from: https://onlinelibrary.wiley.com/doi/full/10.7863/jum.1985.4.6.273.

  41. Holle J, Habbig S, Gratopp A, Mauritsch A, Müller D, Thumfart J. Complement activation in children with Streptococcus pneumoniae associated hemolytic uremic syndrome. Pediatr Nephrol. 2021;36:1311–5.

    Article  Google Scholar 

  42. Von Vigier RO, Seibel K, Bianchetti MG. Positive Coombs test in pneumococcus-associated hemolytic uremic syndrome. A review of the literature. Nephron 1999;82:183–4.

    Article  Google Scholar 

  43. Scobell RR, Kaplan BS, Copelovitch L. New insights into the pathogenesis of Streptococcus pneumoniae–associated hemolytic uremic syndrome. Pediatr Nephrol. 2020;35:1585–91.

    Article  Google Scholar 

  44. Brown EJ, Joiner KA, Frank MM. Interaction of desialated guinea pig erythrocytes with the classical and alternative pathways of guinea pig complement in vivo and in vitro. J Clin Invest. 1983;71:1710–9.

    Article  CAS  Google Scholar 

  45. Çakar N, Ozcakar ZB, Ozaltin F, Koyun M, Celikel Acar B, Bahat E, et al. Atypical hemolytic uremic syndrome in children aged. Nephron 2018;139:211–8.

    Article  Google Scholar 

  46. Sansbury FH, Cordell HJ, Bingham C, Bromilow G, Nicholls A, Powell R, et al. Factors determining penetrance in familial atypical haemolytic uraemic syndrome. J Med Genet. 2014;51:756–64.

    Article  CAS  Google Scholar 

  47. Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The “Swiss Army Knife” of innate immunity and host defense. Immunol Rev. 2016;274:33.

    Article  CAS  Google Scholar 

  48. Fervenza FC, Sethi S. Circulating Complement Levels and C3 Glomerulopathy. Clin J Am Soc Nephrol. 2014;9:1829–31.

    Article  CAS  Google Scholar 

  49. Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics. 2014. Available from: https://pubmed.ncbi.nlm.nih.gov/25332724/.

  50. Yedgar S, Koshkaryev A, Barshtein G. The red blood cell in vascular occlusion. Pathophysiol Haemost Thromb. 2002;32:263–8. https://pubmed.ncbi.nlm.nih.gov/13679654/.

    Article  CAS  Google Scholar 

  51. Endo Y, Matsushita M, Fujita T. Role of ficolin in innate immunity and its molecular basis. Immunobiology 2007;212:371–9.

    Article  CAS  Google Scholar 

  52. States DJ, Gish W. Combined use of sequence similarity and codon bias for coding region identification. J Comput Biol. 1994;1:39–50.

    Article  CAS  Google Scholar 

  53. Matsushita M, Matsushita A, Endo Y, Nakata M, Kojima N, Mizuochi T, et al. Origin of the classical complement pathway: Lamprey orthologue of mammalian C1q acts as a lectin. Proc Natl Acad Sci USA. 2004;101:10127–31.

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by the Morris Kahn Family Foundation, the Israel Science Foundation (Grant no. 2034/18) awarded to OSB, and the National Knowledge Center for Rare/Orphan Diseases of the Israel Ministry of Science, Technology and Space, at Ben-Gurion University of the Negev and Soroka Medical Center, Beer-Sheva, Israel. The work of GS is supported in part by the Israel Ministry of Aliyah and Integration.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by NH with the assistance of RS, EK, YY and OSB. NH performed bioinformatics and WES analysis. NH and GS designed and performed experiments. Microscopy was performed with the assistance of IC. RS, MES, EK, GL, MG and AN contributed to clinical evaluation of the patient. The study was supervised by OSB.

Corresponding author

Correspondence to Ohad S. Birk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The participants of this study provided written informed consent according to a protocol approved by the Soroka Medical Center institutional review board and by the Israel National Committee for Human Genetic Studies, in adherence with the Helsinki principles (ID5071G).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hadar, N., Schreiber, R., Eskin-Schwartz, M. et al. X-linked C1GALT1C1 mutation causes atypical hemolytic uremic syndrome. Eur J Hum Genet (2023). https://doi.org/10.1038/s41431-022-01278-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-022-01278-5

Search

Quick links