Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silencing XIST on the future active X: Searching human and bovine preimplantation embryos for the repressor

Abstract

X inactivation is the means of equalizing the dosage of X chromosomal genes in male and female eutherian mammals, so that only one X is active in each cell. The XIST locus (in cis) on each additional X chromosome initiates the transcriptional silence of that chromosome, making it an inactive X. How the active X in both males and females is protected from inactivation by its own XIST locus is not well understood in any mammal. Previous studies of autosomal duplications suggest that gene(s) on the short arm of human chromosome 19 repress XIST on the active X. Here, we examine the time of transcription of some candidate genes in preimplantation embryos using single-cell RNA sequencing data from human embryos and qRT-PCR from bovine embryos. The candidate genes assayed are those transcribed from 19p13.3-13.2, which are widely expressed and can remodel chromatin. Our results confirm that XIST is expressed at low levels from the future active X in embryos of both sexes; they also show that the XIST locus is repressed in both sexes when pluripotency factors are being upregulated, during the 4–8 cell and morula stages in human and bovine embryos – well before the early blastocyst (E5) when XIST on the inactive X in females starts to be upregulated. Our data suggest a role for DNMT1, UHRF1, SAFB and SAFB2 in XIST repression; they also exclude XACT and other 19p candidate genes and provide the transcriptional timing for some genes not previously assayed in human or bovine preimplantation embryos.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Box plots of gene expression (RPKM).
Fig. 2: Box plots of gene expression (RPKM).
Fig. 3: The relative expressions of candidate XIST repressor genes in female (red bars) and male (blue bars) bovine embryos from 4-cell stage to day 8 blastocysts, as detected by quantitative RT-PCR.

Data availability

All data can be found within this published article and its supplementary files.

References

  1. Lyon MF. Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet. 1962;14:135–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown CJ, Hendrich BD, Rupert JL, Lafrenière RG, Xing Y, Lawrence J, et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992;71:527–42.

    CAS  PubMed  Article  Google Scholar 

  3. Yu B, van Tol HTA, Stout TAE, Roelen BAJ. Initiation of X chromosome inactivation during bovine embryo development. Cells. 2020;9:1016.

  4. Lee JT, Jaenisch R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 1997;386:275–9.

    CAS  PubMed  Article  Google Scholar 

  5. Wutz A, Rasmussen TP, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet. 2002;30:167–74.

    CAS  PubMed  Article  Google Scholar 

  6. Yen ZC, Meyer IM, Karalic S, Brown CJ. A cross-species comparison of X-chromosome inactivation in Eutheria. Genomics 2007;90:453–63.

    CAS  PubMed  Article  Google Scholar 

  7. Migeon BR, Kazi E, Haisley-Royster C, Hu J, Reeves R, Call L, et al. Human X inactivation center induces random X chromosome inactivation in male transgenic mice. Genomics 1999;59:113–21.

    CAS  PubMed  Article  Google Scholar 

  8. Czermiński JT, Lawrence JB. Silencing Trisomy 21 with XIST in neural stem cells promotes neuronal differentiation. Dev Cell. 2020;52:294–308.e3.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Migeon BR, Chowdhury AK, Dunston JA, McIntosh I. Identification of TSIX, encoding an RNA antisense to human XIST, reveals differences from its murine counterpart: implications for X inactivation. Am J Hum Genet. 2001;69:951–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Migeon BR, Lee CH, Chowdhury AK, Carpenter H. Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. Am J Hum Genet. 2002;71:286–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Migeon BR, Pappas K, Stetten G, Trunca C, Jacobs PA. X inactivation in triploidy and trisomy: The search for autosomal transfactors that choose the active X. Eur J Hum Genet. 2008;16:153–62.

    CAS  PubMed  Article  Google Scholar 

  12. Weaver DD, Gartler SM. Evidence for two active X chromosomes in a human XXY triploid. Humangenetik 1975;28:39–42.

    CAS  PubMed  Google Scholar 

  13. Jacobs PA, Matsuyama AM, Buchanan IM, Wilson C. Late replicating X chromosomes in human triploidy. Am J Hum Genet. 1979;31:446–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jacobs PA, Migeon BR. Studies of X-chromosome inactivation in trisomies. Cytogenet Cell Genet. 1989;50:75–7.

    CAS  PubMed  Article  Google Scholar 

  15. Gartler SM, Varadarajan KR, Luo P, Norwood TH, Canfield TK, Hansen RS. Abnormal X: Autosome ratio, but normal X chromosome inactivation in human triploid cultures. BMC Genet. 2006;7:41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Deng X, Nguyen DK, Hansen RS, Van Dyke DL, Gartler SM, Disteche CM. Dosage regulation of the active X chromosome in human triploid cells. PLoS Genet. 2009;5:e1000751.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Migeon BR, Sprenkle JA, Do TT. Stability of the “two active X” phenotype in triploid somatic cells. Cell 1979;18:637–41.

    CAS  PubMed  Article  Google Scholar 

  18. Migeon BR, Beer MA, Bjornsson HT. Embryonic loss of human females with partial trisomy 19 identifies region critical for the single active X. PLoS One. 2017;12:e0170403.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Migeon BR. Stochastic gene expression and chromosome interactions in protecting the human active X from silencing by XIST. Nucleus 2021;12:1–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015;43:D789–98.

    PubMed  Article  CAS  Google Scholar 

  21. Fukuda A, Tomikawa J, Miura T, Hata K, Nakabayashi K, Eggan K, et al. The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nat Commun. 2014;5:5464.

    CAS  PubMed  Article  Google Scholar 

  22. Boulard M, Edwards JR, Bestor TH. Abnormal X chromosome inactivation and sex-specific gene dysregulation after ablation of FBXL10. Epigenetics Chromatin. 2016;9:22.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Okamoto I, Patrat C, Thépot D, Peynot N, Fauque P, Daniel N, et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 2011;472:370–4.

    CAS  PubMed  Article  Google Scholar 

  24. Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-Seq reveals lineage and x chromosome dynamics in human preimplantation embryos. Cell 2016;167:285.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131–9.

    CAS  PubMed  Article  Google Scholar 

  26. Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, et al. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics. 2014;15:756.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Migeon BR. The Non-random location of autosomal genes that participate in X inactivation. Front Cell Dev Biol. 2019;7:144.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Migeon BR. The single active X in human cells: Evolutionary tinkering personified. Hum Genet. 2011;130:281–93.

    PubMed  Article  Google Scholar 

  29. Moreira de Mello JC, Fernandes GR, Vibranovski MD, Pereira LV. Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci Rep. 2017;7:10794.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Brinkhof B, van Tol HT, Groot Koerkamp MJ, Wubbolts RW, Haagsman HP, Roelen BA. Characterization of bovine embryos cultured under conditions appropriate for sustaining human naïve pluripotency. PLoS One. 2017;12:e0172920.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Blakeley P, Fogarty NM, del Valle I, Wamaitha SE, Hu TX, Elder K, et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 2015;142:3151–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Patrat C, Ouimette JF, Rougeulle C. X chromosome inactivation in human development. Development. 2020;147:dev183095.

  33. Zernicka-Goetz M, Morris SA, Bruce AW. Making a firm decision: Multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet. 2009;10:467–77.

    CAS  PubMed  Article  Google Scholar 

  34. Onichtchouk D, Driever W. Zygotic genome activators, developmental timing, and pluripotency. Curr Top Dev Biol. 2016;116:273–97.

    CAS  PubMed  Article  Google Scholar 

  35. Chitiashvili T, Dror I, Kim R, Hsu FM, Chaudhari R, Pandolfi E, et al. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat Cell Biol. 2020;22:1436–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Motosugi N, Okada C, Sugiyama A, Kawasaki T, Kimura M, Shiina T, et al. Deletion of lncRNA XACT does not change expression dosage of X-linked genes, but affects differentiation potential in hPSCs. Cell Rep. 2021;35:109222.

    CAS  PubMed  Article  Google Scholar 

  37. Theunissen TW, Jaenisch R. Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development 2017;144:4496–509.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Bermejo-Alvarez P, Ramos-Ibeas P, Gutierrez-Adan A. Solving the “X” in embryos and stem cells. Stem Cells Dev. 2012;21:1215–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Panning B, Jaenisch R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev. 1996;10:1991–2002.

    CAS  PubMed  Article  Google Scholar 

  40. Datar KV, Dreyfuss G, Swanson MS. The human hnRNP M proteins: Identification of a methionine/arginine-rich repeat motif in ribonucleoproteins. Nucleic Acids Res. 1993;21:439–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Uysal F, Akkoyunlu G, Ozturk S. Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie 2015;116:103–13.

    CAS  PubMed  Article  Google Scholar 

  42. McGraw S, Oakes CC, Martel J, Cirio MC, de Zeeuw P, Mak W, et al. Loss of DNMT1o disrupts imprinted X chromosome inactivation and accentuates placental defects in females. PLoS Genet. 2013;9:e1003873.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Debril MB, Dubuquoy L, Feige JN, Wahli W, Desvergne B, Auwerx J, et al. Scaffold attachment factor B1 directly interacts with nuclear receptors in living cells and represses transcriptional activity. J Mol Endocrinol. 2005;35:503–17.

    CAS  PubMed  Article  Google Scholar 

  44. Strehle M, Guttman M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr Opin Cell Biol. 2020;64:139–47.

    CAS  PubMed  Article  Google Scholar 

  45. Okamoto I, Nakamura T, Sasaki K, Yabuta Y, Iwatani C, Tsuchiya H, et al. The X chromosome dosage compensation program during the development of cynomolgus monkeys. Science 2021;374:eabd8887.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to our Hopkins colleagues, Michael Beer, Hans Bjornsson, Haig Kazazian, Garry Cutting, Jeremy Nathans for their careful reading of the paper and their insightful suggestions.

Funding

BY is supported by a PhD scholarship from the Chinese Scholarship Council (CSC) (CSC201606300033).

Author information

Authors and Affiliations

Authors

Contributions

MAA was responsible for extracting and analysing data, interpreting results, and writing the manuscript. BY was responsible for conducting the experiments and writing methods and results. BAJR was responsible for providing bovine embryo samples, writing the report, interpreting results and providing feedback on the manuscript. BRM was responsible for conceptual design, interpreting results and writing the manuscript.

Corresponding author

Correspondence to Barbara R. Migeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

There was no ethical approval required for this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aksit, M.A., Yu, B., Roelen, B.A.J. et al. Silencing XIST on the future active X: Searching human and bovine preimplantation embryos for the repressor. Eur J Hum Genet (2022). https://doi.org/10.1038/s41431-022-01115-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-022-01115-9

Search

Quick links