SKOR1 has a transcriptional regulatory role on genes involved in pathways related to restless legs syndrome

Abstract

Restless legs syndrome (RLS) is a common sleep-related sensory-motor disorder. It is characterized by uncomfortable sensations in the legs during the evening or at night. The symptoms can be partially relieved by movement, so typically affected individual needs to walk during rest time; this interferes with sleep. GWAS have identified 19 RLS-associated loci. Among the first to be reported and most significant and robustly replicated reports are variants in the SKOR1 noncoding regions. SKOR1 is highly expressed in the CNS of humans and mice. Skor1 acts as a corepressor of Lbx1 transcription factor in mice and these two genes act together to regulate the cell fate of interneurons in the dorsal horn of the spinal cord. Based on this data we investigated the regulatory role of SKOR1 using a global RNA-sequencing approach in human cell lines where SKOR1 was either overexpressed or silenced. For this work we generated and validated a new poly-clonal anti-SKOR1. Pathway and gene set enrichment analyses of the differentially expressed genes showed, among others, enrichment of genes involved in neurodevelopment and iron metabolism, two RLS relevant pathways that were previously found to be enriched in the latest RLS GWAS meta-analysis. Analysis of our different datasets further supports and highlights the regulatory role of SKOR1, which when dysregulated might represent a key pathogenic element of RLS. A better understanding of SKOR1 and its activity could open new avenues of investigation for the development of a much-needed therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Anti-SKOR1 generation and characterization.
Fig. 2: RNA-Seq data analysis of human cell lines with SKOR1 gene overexpressed or silenced.
Fig. 3: Venn diagram of DEGs common between HAP1 and HEK293 cells.
Fig. 4: Interactions between the pathways significantly enriched in the DEGs possibly repressed or activated by SKOR1.

References

  1. 1.

    Desai AV, Cherkas LF, Spector TD, Williams AJ. Genetic influences in self-reported symptoms of obstructive sleep apnoea and restless legs: a twin study. Twin Res. 2004;7:589–95.

    Article  Google Scholar 

  2. 2.

    Xiong L, Jang K, Montplaisir J, Levchenko A, Thibodeau P, Gaspar C, et al. Canadian restless legs syndrome twin study. Neurology 2007;68:1631–3.

    CAS  Article  Google Scholar 

  3. 3.

    Chen S, Ondo WG, Rao S, Li L, Chen Q, Wang Q. Genomewide linkage scan identifies a novel susceptibility locus for restless legs syndrome on chromosome 9p. Am J Hum Genet. 2004;74:876–85.

    CAS  Article  Google Scholar 

  4. 4.

    Jimenez-Jimenez FJ, Alonso-Navarro H, Garcia-Martin E, Agundez JAG. Genetics of restless legs syndrome: an update. Sleep Med Rev. 2018;39:108–21.

    Article  Google Scholar 

  5. 5.

    Winkelmann J, Schormair B, Lichtner P, Ripke S, Xiong L, Jalilzadeh S, et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet. 2007;39:1000–6.

    CAS  Article  Google Scholar 

  6. 6.

    Yang Q, Li L, Chen Q, Foldvary-Schaefer N, Ondo WG, Wang QK. Association studies of variants in MEIS1, BTBD9, and MAP2K5/SKOR1 with restless legs syndrome in a US population. Sleep Med. 2011;12:800–4.

    Article  Google Scholar 

  7. 7.

    Schormair B, Zhao C, Bell S, Tilch E, Salminen AV, Putz B, et al. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol. 2017;16:898–907.

    Article  Google Scholar 

  8. 8.

    Catoire H, Sarayloo F, Mourabit Amari K, Apuzzo S, Grant A, Rochefort D, et al. A direct interaction between two Restless Legs Syndrome predisposing genes: MEIS1 and SKOR1. Sci Rep. 2018;8:12173.

    Article  Google Scholar 

  9. 9.

    Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  Google Scholar 

  10. 10.

    Mizuhara E, Nakatani T, Minaki Y, Sakamoto Y, Ono Y. Corl1, a novel neuronal lineage-specific transcriptional corepressor for the homeodomain transcription factor Lbx1. The. J Biol Chem. 2005;280:3645–55.

    CAS  Article  Google Scholar 

  11. 11.

    Essletzbichler P, Konopka T, Santoro F, Chen D, Gapp BV, Kralovics R, et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 2014;24:2059–65.

    CAS  Article  Google Scholar 

  12. 12.

    Arndt S, Poser I, Moser M, Bosserhoff AK. Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling. Mol Cell Neurosci. 2007;34:603–11.

    CAS  Article  Google Scholar 

  13. 13.

    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    CAS  Article  Google Scholar 

  14. 14.

    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

    CAS  Article  Google Scholar 

  15. 15.

    Bourgey M, Dali R, Eveleigh R, Chen KC, Letourneau L, Fillon J, et al. GenPipes: an open-source framework for distributed and scalable genomic analyses. Gigascience. 2019;8.

  16. 16.

    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–40.

    CAS  Article  Google Scholar 

  17. 17.

    Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  Google Scholar 

  18. 18.

    Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids Res. 2009;37:1–13.

    Article  Google Scholar 

  19. 19.

    Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinforma. 2013;14:128.

    Article  Google Scholar 

  20. 20.

    Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids Res. 2016;44(W1):W90–7.

    CAS  Article  Google Scholar 

  21. 21.

    Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009;25:1091–3.

    CAS  Article  Google Scholar 

  22. 22.

    Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79.

    CAS  Article  Google Scholar 

  23. 23.

    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149:1060–72.

    CAS  Article  Google Scholar 

  24. 24.

    Do Van B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M, et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis. 2016;94:169–78.

    Article  Google Scholar 

  25. 25.

    Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017;12:8–17.

    CAS  Article  Google Scholar 

  26. 26.

    Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, et al. Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 2019;56:4880–93.

    CAS  Article  Google Scholar 

  27. 27.

    Allen RP, Earley CJ. The role of iron in restless legs syndrome. Mov Disord: Off J Mov Disord Soc 2007;22(Suppl 18):S440–8.

    Article  Google Scholar 

  28. 28.

    Morse D, Choi AM. Heme oxygenase-1: the “emerging molecule” has arrived. Am J respiratory cell Mol Biol. 2002;27:8–16.

    CAS  Article  Google Scholar 

  29. 29.

    Schipper HM. Heme oxygenase-1: role in brain aging and neurodegeneration. Exp Gerontol. 2000;35:821–30.

    CAS  Article  Google Scholar 

  30. 30.

    Sarayloo F, Dionne-Laporte A, Catoire H, Rochefort D, Houle G, Ross JP, et al. Mineral absorption is an enriched pathway in a brain region of restless legs syndrome patients with reduced MEIS1 expression. PloS ONE 2019;14:e0225186.

    CAS  Article  Google Scholar 

  31. 31.

    Trenkwalder C, Allen R, Hogl B, Paulus W, Winkelmann J. Restless legs syndrome associated with major diseases: a systematic review and new concept. Neurology 2016;86:1336–43.

    CAS  Article  Google Scholar 

  32. 32.

    Sarayloo F, Dion PA, Rouleau GA. MEIS1 and restless legs syndrome: a comprehensive review. Front Neurol. 2019;10:935.

    Article  Google Scholar 

  33. 33.

    Spieler D, Kaffe M, Knauf F, Bessa J, Tena JJ, Giesert F, et al. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 2014;24:592–603.

    CAS  Article  Google Scholar 

  34. 34.

    Tyvaert L, Houdayer E, Devanne H, Bourriez JL, Derambure P, Monaca C. Cortical involvement in the sensory and motor symptoms of primary restless legs syndrome. Sleep Med. 2009;10:1090–6.

    CAS  Article  Google Scholar 

  35. 35.

    Garcia-Martin E, Jimenez-Jimenez FJ, Alonso-Navarro H, Martinez C, Zurdo M, Turpin-Fenoll L, et al. Heme Oxygenase-1 and 2 common genetic variants and risk for restless legs syndrome. Medicine 2015;94:e1448.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

GAR holds the Canada’s Research Chair in Neurogenetics and the Wilder Penfield Chair in Neuroscience. This study was funded by Canadian Institute of Health Research (RN254517-332736). FA was funded by the Fonds de Recherche du Québec–Santé.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guy A. Rouleau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarayloo, F., Spiegelman, D., Rochefort, D. et al. SKOR1 has a transcriptional regulatory role on genes involved in pathways related to restless legs syndrome. Eur J Hum Genet 28, 1520–1528 (2020). https://doi.org/10.1038/s41431-020-0670-4

Download citation

Search