Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Postprandial glucose metabolism in children and adolescents with type 1 diabetes mellitus: potential targets for improvement

Abstract

The main goal of therapeutic management of type 1 Diabetes Mellitus (T1DM) is to maintain optimal glycemic control to prevent acute and long-term diabetes complications and to enable a good quality of life. Postprandial glycemia makes a substantial contribution to overall glycemic control and variability in diabetes and, despite technological advancements in insulin treatments, optimal postprandial glycemia is difficult to achieve. Several factors influence postprandial blood glucose levels in children and adolescents with T1DM, including nutritional habits and adjustment of insulin doses according to meal composition. Additionally, hormone secretion, enteroendocrine axis dysfunction, altered gastrointestinal digestion and absorption, and physical activity play important roles. Meal-time routines, intake of appropriate ratios of macronutrients, and correct adjustment of the insulin dose for the meal composition have positive impacts on postprandial glycemic variability and long-term cardiometabolic health of the individual with T1DM. Further knowledge in the field is necessary for management of all these factors to be part of routine pediatric diabetes education and clinical practice. Thus, the aim of this report is to review the main factors that influence postprandial blood glucose levels and metabolism, focusing on macronutrients and other nutritional and lifestyle factors, to suggest potential targets for improving postprandial glycemia in the management of children and adolescents with T1DM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The multiple factors that influence postprandial glucose metabolism.

Similar content being viewed by others

References

  1. Hoey H, Aanstoot HJ, Chiarelli F, Daneman D, Danne T, Dorchy H, et al. Good metabolic control is associated with better quality of life in 2101 adolescents with type 1 diabetes. Diabetes Care. 2001;24:1923–8.

    CAS  PubMed  Google Scholar 

  2. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. J Pediatr. 1994;125:177–88.

  3. American Diabetes Association Professional Practice Committee. 14. Children and adolescents: standards of medical care in diabetes—2022. Diabetes Care. 2021;45 Suppl 1:S208–31.

  4. Schrot RJ. Targeting plasma glucose: preprandial versus postprandial. Clin Diabetes. 2004;22:169–72.

    Google Scholar 

  5. Davidson J. Should postprandial glucose be measured and treated to a particular target? Yes. Diabetes Care. 2003;26:1919–21.

    PubMed  Google Scholar 

  6. Association AD. Postprandial blood glucose. Diabetes Care. 2001;24:775–8.

    Google Scholar 

  7. Boland E, Monsod T, Delucia M, Brandt CA, Fernando S, Tamborlane WV. Limitations of conventional methods of self-monitoring of blood glucose: lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes. Diabetes Care. 2001;24:1858–62.

    CAS  PubMed  Google Scholar 

  8. Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019;7:221–30.

    PubMed  Google Scholar 

  9. Prigge R, McKnight JA, Wild SH, Haynes A, Jones TW, Davis EA, et al. International comparison of glycaemic control in people with type 1 diabetes: an update and extension. Diabet Med. 2022;39:e14766.

    CAS  PubMed  Google Scholar 

  10. Piona C, Marigliano M, Mozzillo E, Rosanio F, Zanfardino A, Iafusco D, et al. Relationships between HbA1c and continuous glucose monitoring metrics of glycaemic control and glucose variability in a large cohort of children and adolescents with type 1 diabetes. Diabetes Res Clin Pr. 2021;177:108933.

    CAS  Google Scholar 

  11. Lin YH, Huang YY, Chen HY, Hsieh SH, Sun JH, Chen ST, et al. Impact of carbohydrate on glucose variability in patients with type 1 diabetes assessed through professional continuous glucose monitoring: a retrospective study. Diabetes Ther Res Treat Educ Diabetes Relat Disord. 2019;10:2289–304.

    CAS  Google Scholar 

  12. Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM, Clark NG, et al. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2008;31:S61–78.

    CAS  PubMed  Google Scholar 

  13. Maffeis C, Pinelli L. Teaching children with diabetes about adequate dietary choices. Br J Nutr. 2008;99:S33–39.

    CAS  PubMed  Google Scholar 

  14. Schafer RG, Bohannon B, Franz MJ, Freeman J, Holmes A, McLaughlin S, et al. Diabetes nutrition recommendations for health care institutions. Diabetes Care. 2004;27:S55–57.

    PubMed  Google Scholar 

  15. Marigliano M, Morandi A, Maschio M, Sabbion A, Contreas G, Tomasselli F, et al. Nutritional education and carbohydrate counting in children with type 1 diabetes treated with continuous subcutaneous insulin infusion: the effects on dietary habits, body composition and glycometabolic control. Acta Diabetol. 2013;50:959–64.

    CAS  PubMed  Google Scholar 

  16. Maffeis C, Tomasselli F, Tommasi M, Bresadola I, Trandev T, Fornari E, et al. Nutrition habits of children and adolescents with type 1 diabetes changed in a 10 years span. Pediatr Diabetes. 2020;21:960–8.

    CAS  PubMed  Google Scholar 

  17. Ahola AJ, Freese R, Mäkimattila S, Forsblom C, Groop PH. FinnDiane Study Group. Dietary patterns are associated with various vascular health markers and complications in type 1 diabetes. J Diabetes Complicat. 2016;30:1144–50.

    Google Scholar 

  18. de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2014;37:2843–63.

    PubMed  PubMed Central  Google Scholar 

  19. Rabasa-Lhoret R, Garon J, Langelier H, Poisson D, Chiasson JL. Effects of meal carbohydrate content on insulin requirements in type 1 diabetic patients treated intensively with the basal-bolus (ultralente-regular) insulin regimen. Diabetes Care. 1999;22:667–73.

    CAS  PubMed  Google Scholar 

  20. Paterson MA, Smart CEM, Lopez PE, McElduff P, Attia J, Morbey C, et al. Influence of dietary protein on postprandial blood glucose levels in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Diabet Med J Br Diabet Assoc. 2016;33:592–8.

    CAS  Google Scholar 

  21. Bevier WC, Zisser H, Palerm CC, Finan DA, Seborg DE, Doyle FJ, et al. Calculating the insulin to carbohydrate ratio using the hyperinsulinaemic-euglycaemic clamp-a novel use for a proven technique. Diabetes Metab Res Rev. 2007;23:472–8.

    CAS  PubMed  Google Scholar 

  22. Deeb LC, Holcombe JH, Brunelle R, Zalani S, Brink S, Jenner M, et al. Insulin lispro lowers postprandial glucose in prepubertal children with diabetes. Pediatrics. 2001;108:1175–9.

    CAS  PubMed  Google Scholar 

  23. Tascini G, Berioli MG, Cerquiglini L, Santi E, Mancini G, Rogari F, et al. Carbohydrate counting in children and adolescents with type 1 diabetes. Nutrients. 2018;10:E109.

    Google Scholar 

  24. Annan SF, Higgins LA, Jelleryd E, Hannon T, Rose S, Salis S, et al. ISPAD Clinical Practice Consensus Guidelines 2022: nutritional management in children and adolescents with diabetes. Pediatr Diabetes. 2022;23:1297–321.

    PubMed  Google Scholar 

  25. Smart CE, King BR, McElduff P, Collins CE. In children using intensive insulin therapy, a 20-g variation in carbohydrate amount significantly impacts on postprandial glycaemia. Diabet Med. 2012;29:e21–4.

    CAS  PubMed  Google Scholar 

  26. American Diabetes Association. 13. Children and adolescents: standards of medical care in Diabetes—2021. Diabetes Care. 2020;44 Suppl 1:S180–99.

  27. Gillespie SJ, Kulkarni KD, Daly AE. Using carbohydrate counting in diabetes clinical practice. J Am Diet Assoc. 1998;98:897–905.

    CAS  PubMed  Google Scholar 

  28. Halfon P, Belkhadir J, Slama G. Correlation between amount of carbohydrate in mixed meals and insulin delivery by artificial pancreas in seven IDDM subjects. Diabetes Care. 1989;12:427–9.

    CAS  PubMed  Google Scholar 

  29. Cordon NM, Smart CEM, Smith GJ, Davis EA, Jones TW, Seckold R, et al. The relationship between meal carbohydrate quantity and the insulin to carbohydrate ratio required to maintain glycaemia is non-linear in young people with type 1 diabetes: a randomized crossover trial. Diabet Med. 2022;39:e14675.

    CAS  PubMed  Google Scholar 

  30. Bonsembiante L, Targher G, Maffeis C. Type 2 diabetes and dietary carbohydrate intake of adolescents and young adults: what is the impact of different choices? Nutrients. 2021;13:3344.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Augustin LSA, Kendall CWC, Jenkins DJA, Willett WC, Astrup A, Barclay AW, et al. Glycemic index, glycemic load and glycemic response: an International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis NMCD. 2015;25:795–815.

    CAS  PubMed  Google Scholar 

  32. Ryan RL, King BR, Anderson DG, Attia JR, Collins CE, Smart CE. Influence of and optimal insulin therapy for a low–glycemic index meal in children with type 1 diabetes receiving intensive insulin therapy. Diabetes Care. 2008;31:1485–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Paterson MA, King BR, Smart CEM, Smith T, Rafferty J, Lopez PE. Impact of dietary protein on postprandial glycaemic control and insulin requirements in Type 1 diabetes: a systematic review. Diabet Med J Br Diabet Assoc. 2019;36:1585–99.

    CAS  Google Scholar 

  34. Paterson M, Bell KJ, O’Connell SM, Smart CE, Shafat A, King B. The role of dietary protein and fat in glycaemic control in type 1 diabetes: implications for intensive diabetes management. Curr Diab Rep. 2015;15:61.

    PubMed  PubMed Central  Google Scholar 

  35. Linn T, Geyer R, Prassek S, Laube H. Effect of dietary protein intake on insulin secretion and glucose metabolism in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81:3938–43.

    CAS  PubMed  Google Scholar 

  36. Felig P, Wahren J, Sherwin R, Palaiologos G. Amino acid and protein metabolism in diabetes mellitus. Arch Intern Med. 1977;137:507–13.

    CAS  PubMed  Google Scholar 

  37. Slag MF, Ahmad M, Gannon MC, Nuttall FQ. Meal stimulation of cortisol secretion: a protein induced effect. Metabolism. 1981;30:1104–8.

    CAS  PubMed  Google Scholar 

  38. Winiger G, Keller U, Laager R, Girard J, Berger W. Protein content of the evening meal and nocturnal plasma glucose regulation in type-I diabetic subjects. Horm Res. 1995;44:101–4.

    CAS  PubMed  Google Scholar 

  39. Brown RJ, Sinaii N, Rother KI. Too much glucagon, too little insulin: time course of pancreatic islet dysfunction in new-onset type 1 diabetes. Diabetes Care. 2008;31:1403–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bell KJ, Smart CE, Steil GM, Brand-Miller JC, King B, Wolpert HA. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care. 2015;38:1008–15.

    CAS  PubMed  Google Scholar 

  41. Wilson D, Chase HP, Kollman C, Xing D, Caswell K, Tansey M, et al. Low-fat vs. high-fat bedtime snacks in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2008;9:320–5.

    PubMed  Google Scholar 

  42. Abdou M, Hafez MH, Anwar GM, Fahmy WA, Abd Alfattah NM, Salem RI, et al. Effect of high protein and fat diet on postprandial blood glucose levels in children and adolescents with type 1 diabetes in Cairo, Egypt. Diabetes Metab Syndr. 2021;15:7–12.

    CAS  PubMed  Google Scholar 

  43. O’Connell SM, O’Toole NMA, Cronin CN, Saat-Murphy C, McElduff P, King BR, et al. Does dietary fat cause a dose dependent glycemic response in youth with type 1 diabetes? Pediatr Diabetes. 2021;22:1108–14.

    PubMed  Google Scholar 

  44. Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol. 2014;220:T61–79.

    CAS  PubMed  Google Scholar 

  45. Lodefalk M, Carlsson-Skwirut C, Holst JJ, Aman J, Bang P. Effects of fat supplementation on postprandial GIP, GLP-1, ghrelin and IGFBP-1 levels: a pilot study on adolescents with type 1 diabetes. Horm Res Paediatr. 2010;73:355–62.

    CAS  PubMed  Google Scholar 

  46. Effects of dietary fat and protein on glucoregulatory hormones in adolescents and young adults with type 1 diabetes - [Internet] [cited 2022 Feb]. Available from: https://pubmed.ncbi.nlm.nih.gov/34410410/.

  47. Bozzetto L, Alderisio A, Clemente G, Giorgini M, Barone F, Griffo E, et al. Gastrointestinal effects of extra-virgin olive oil associated with lower postprandial glycemia in type 1 diabetes. Clin Nutr Edinb Scotl. 2019;38:2645–51.

    CAS  Google Scholar 

  48. Carbonnel F, Lémann M, Rambaud JC, Mundler O, Jian R. Effect of the energy density of a solid-liquid meal on gastric emptying and satiety. Am J Clin Nutr. 1994;60:307–11.

    CAS  PubMed  Google Scholar 

  49. Borg R, Kuenen JC, Carstensen B, Zheng H, Nathan DM, Heine RJ, et al. Associations between features of glucose exposure and A1C: the A1C-Derived Average Glucose (ADAG) study. Diabetes. 2010;59:1585–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhong VW, Lamichhane AP, Crandell JL, Couch SC, Liese AD. The NS, et al. Association of adherence to a Mediterranean diet with glycemic control and cardiovascular risk factors in youth with type I diabetes: the SEARCH Nutrition Ancillary Study. Eur J Clin Nutr. 2016;70:802–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pańkowska E, Błazik M. Bolus calculator with nutrition database software, a new concept of prandial insulin programming for pump users. J Diabetes Sci Technol. 2010;4:571–6.

    PubMed  PubMed Central  Google Scholar 

  52. Chase HP, Saib SZ, MacKenzie T, Hansen MM, Garg SK. Post-prandial glucose excursions following four methods of bolus insulin administration in subjects with type 1 diabetes. Diabet Med J Br Diabet Assoc. 2002;19:317–21.

    CAS  Google Scholar 

  53. Kordonouri O, Hartmann R, Remus K, Bläsig S, Sadeghian E, Danne T. Benefit of supplementary fat plus protein counting as compared with conventional carbohydrate counting for insulin bolus calculation in children with pump therapy. Pediatr Diabetes. 2012;13:540–4.

    CAS  PubMed  Google Scholar 

  54. Furthner D, Lukas A, Schneider AM, Mörwald K, Maruszczak K, Gombos P, et al. The role of protein and fat intake on insulin therapy in glycaemic control of paediatric type 1 diabetes: a systematic review and research gaps. Nutrients. 2021;13:3558.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bell KJ, Gray R, Munns D, Petocz P, Steil G, Howard G, et al. Clinical application of the food insulin index for mealtime insulin dosing in adults with type 1 diabetes: a randomized controlled trial. Diabetes Technol Ther. 2016;18:218–25.

    CAS  PubMed  Google Scholar 

  56. Bell KJ, Gray R, Munns D, Petocz P, Howard G, Colagiuri S, et al. Estimating insulin demand for protein-containing foods using the food insulin index. Eur J Clin Nutr. 2014;68:1055–9.

    CAS  PubMed  Google Scholar 

  57. Lopez PE, Evans M, King BR, Jones TW, Bell K, McElduff P, et al. A randomized comparison of three prandial insulin dosing algorithms for children and adolescents with type 1 diabetes. Diabet Med J Br Diabet Assoc. 2018;35:1440–7.

    CAS  Google Scholar 

  58. Smith TA, Smart CE, Fuery MEJ, Howley PP, Knight BA, Harris M, et al. In children and young people with type 1 diabetes using Pump therapy, an additional 40% of the insulin dose for a high-fat, high-protein breakfast improves postprandial glycaemic excursions: a cross-over trial. Diabet Med J Br Diabet Assoc. 2021;38:e14511.

    CAS  Google Scholar 

  59. Smith TA, Smart CE, Howley PP, Lopez PE, King BR. For a high fat, high protein breakfast, preprandial administration of 125% of the insulin dose improves postprandial glycaemic excursions in people with type 1 diabetes using multiple daily injections: a cross-over trial. Diabet Med J Br Diabet Assoc. 2021;38:e14512.

    CAS  Google Scholar 

  60. Wolpert HA, Atakov-Castillo A, Smith SA, Steil GM. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care. 2013;36:810–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Marigliano M, Piona C, Tommaselli F, Maguolo A, Morandi A, Maffeis C. A new proposal for a second insulin bolus to optimize postprandial glucose profile in adolescents with type 1 diabetes. Acta Diabetol. 2023;60:609–18.

    CAS  PubMed  Google Scholar 

  62. Frohock AM, Oke J, Yaliwal C, Edge J, Besser REJ. Additional insulin dosing for fat and protein in children with type 1 diabetes using multiple daily injections. Pediatr Diabetes. 2022;23:742–8.

    CAS  PubMed  Google Scholar 

  63. Lee SW, Cao M, Sajid S, Hayes M, Choi L, Rother C, et al. The dual-wave bolus feature in continuous subcutaneous insulin infusion pumps controls prolonged post-prandial hyperglycaemia better than standard bolus in type 1 diabetes. Diabetes Nutr Metab. 2004;17:211–6.

    CAS  PubMed  Google Scholar 

  64. Boughton CK, Hartnell S, Allen JM, Hovorka R. The importance of prandial insulin bolus timing with hybrid closed-loop systems. Diabet Med J Br Diabet Assoc. 2019;36:1716–7.

    CAS  Google Scholar 

  65. Vetrani C, Calabrese I, Cavagnuolo L, Pacella D, Napolano E, Di Rienzo S, et al. Dietary determinants of postprandial blood glucose control in adults with type 1 diabetes on a hybrid closed-loop system. Diabetologia. 2022;65:79–87.

    CAS  PubMed  Google Scholar 

  66. Tornese G, Carletti C, Giangreco M, Nisticò D, Faleschini E, Barbi E. Carbohydrate tolerance threshold for unannounced snacks in children and adolescents with type 1 diabetes using an advanced hybrid closed-loop system. Diabetes Care. 2022;45:1486–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Beck RW, Kanapka LG, Breton MD, Brown SA, Wadwa RP, Buckingham BA, et al. A meta-analysis of randomized trial outcomes for the t: slim X2 Insulin pump with Control-IQ Technology in youth and adults from age 2 to 72. Diabetes Technol Ther. 2023;25:329–42.

    PubMed  Google Scholar 

  68. Cherubini V, Rabbone I, Berioli MG, Giorda S, Lo Presti D, Maltoni G, et al. Effectiveness of a closed‐loop control system and a virtual educational camp for children and adolescents with type 1 diabetes: a prospective, multicentre, real‐life study. Diabetes Obes Metab. 2021;23:2484–91.

    CAS  PubMed  Google Scholar 

  69. Colasanto A, Savastio S, Pozzi E, Gorla C, Coïsson JD, Arlorio M, et al. The impact of different types of rice and cooking on postprandial glycemic trends in children with type 1 diabetes with or without celiac disease. Nutrients. 2023;15:1654.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Forlenza GP, Buckingham BA, Brown SA, Bode BW, Levy CJ, Criego AB, et al. First outpatient evaluation of a tubeless automated insulin delivery system with customizable glucose targets in children and adults with type 1 diabetes. Diabetes Technol Ther. 2021;23:410–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ware J, Boughton CK, Allen JM, Wilinska ME, Tauschmann M, Denvir L, et al. Cambridge hybrid closed-loop algorithm in children and adolescents with type 1 diabetes: a multicentre 6-month randomised controlled trial. Lancet Digit Health. 2022;4:e245–55.

    CAS  PubMed  Google Scholar 

  72. Petrovski G, Campbell J, Pasha M, Day E, Hussain K, Khalifa A, et al. Simplified meal announcement versus precise carbohydrate counting in adolescents with type 1 diabetes using the MiniMed 780G advanced hybrid closed loop system: a randomized controlled trial comparing glucose control. Diabetes Care. 2023;46:544–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zuberi Z, Sauli E, Cun L, Deng J, Li WJ, He XL, et al. Insulin-delivery methods for children and adolescents with type 1 diabetes. Ther Adv Endocrinol Metab. 2020;11:2042018820906016.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Galderisi A, Cohen N, Calhoun P, Kraemer K, Breton M, Weinzimer S, et al. Effect of Afrezza on glucose dynamics during HCL treatment. Diabetes Care. 2020;43:2146–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rege NK, Phillips NFB, Weiss MA. Development of glucose-responsive “Smart” insulin systems. Curr Opin Endocrinol Diabetes Obes. 2017;24:267–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Anderson JW, Randles KM, Kendall CWC, Jenkins DJA. Carbohydrate and fiber recommendations for individuals with diabetes: a quantitative assessment and meta-analysis of the evidence. J Am Coll Nutr. 2004;23:5–17.

    PubMed  Google Scholar 

  77. Papathanasopoulos A, Camilleri M. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology. 2010;138:65–72.

    CAS  PubMed  Google Scholar 

  78. Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis - [Internet] [cited 2021 Jul]. Available from: https://pubmed.ncbi.nlm.nih.gov/22218620/.

  79. Gemen R, de Vries JF, Slavin JL. Relationship between molecular structure of cereal dietary fiber and health effects: focus on glucose/insulin response and gut health. Nutr Rev. 2011;69:22–33.

    PubMed  Google Scholar 

  80. Trumbo P, Schlicker S, Yates AA, Poos M. Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102:1621–30.

    PubMed  Google Scholar 

  81. Ahola AJ, Harjutsalo V, Forsblom C, Saraheimo M, Groop PH. Finnish Diabetic Nephropathy Study. Associations of dietary macronutrient and fibre intake with glycaemia in individuals with type 1 diabetes. Diabet Med J Br Diabet Assoc. 2019;36:1391–8.

    CAS  Google Scholar 

  82. Nansel TR, Lipsky LM, Liu A. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes. Am J Clin Nutr. 2016;104:81–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. the EURODIAB Prospective Complications Study Group, Schoenaker DAJM, Toeller M, Chaturvedi N, Fuller JH, Soedamah-Muthu SS. Dietary saturated fat and fibre and risk of cardiovascular disease and all-cause mortality among type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia. 2012;55:2132–41.

    PubMed Central  Google Scholar 

  84. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus [Internet] [cited 2022 Feb]. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043127.

  85. Katz ML, Mehta S, Nansel T, Quinn H, Lipsky LM, Laffel LMB. Associations of nutrient intake with glycemic control in youth with type 1 diabetes: differences by insulin regimen. Diabetes Technol Ther. 2014;16:512–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. D’Alessandro A, De Pergola G. The Mediterranean diet: its definition and evaluation of a priori dietary indexes in primary cardiovascular prevention. Int J Food Sci Nutr. 2018;69:647–59.

    PubMed  Google Scholar 

  87. Calabrese CM, Valentini A, Calabrese G. Gut microbiota and type 1 diabetes mellitus: the effect of Mediterranean diet. Front Nutr. 2020;7:612773

    PubMed  Google Scholar 

  88. Seckold R, Howley P, King BR, Bell K, Smith A, Smart CE. Dietary intake and eating patterns of young children with type 1 diabetes achieving glycemic targets. BMJ Open Diabetes Res Care. 2019;7:e000663.

    PubMed  PubMed Central  Google Scholar 

  89. Rovner AJ, Nansel TR. Are children with type 1 diabetes consuming a healthful diet? Diabetes Educ. 2009;35:97–107.

    PubMed  Google Scholar 

  90. Patton SR. Adherence to diet in youth with type 1 diabetes. J Am Diet Assoc. 2011 ;111:550–5.

    PubMed  PubMed Central  Google Scholar 

  91. Sutherland MW, Ma X, Reboussin BA, Mendoza JA, Bell BA, Kahkoska AR, et al. Socioeconomic position is associated with glycemic control in youth and young adults with type 1 diabetes. Pediatr Diabetes. 2020;21:1412–20.

    PubMed  PubMed Central  Google Scholar 

  92. Geyer MC, Rayner CK, Horowitz M, Couper JJ. Targeting postprandial glycaemia in children with diabetes: opportunities and challenges. Diabetes Obes Metab. 2018;20:766–74.

    PubMed  Google Scholar 

  93. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284:E671–678.

    CAS  PubMed  Google Scholar 

  94. Siafarikas A, Johnston RJ, Bulsara MK, O’Leary P, Jones TW, Davis EA. Early loss of the glucagon response to hypoglycemia in adolescents with type 1 diabetes. Diabetes Care. 2012;35:1757–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lindkvist EB, Laugesen C, Reenberg AT, Ritschel TKS, Svensson J, Jørgensen JB, et al. Performance of a dual-hormone closed-loop system versus insulin-only closed-loop system in adolescents with type 1 diabetes. A single-blind, randomized, controlled, crossover trial. Front Endocrinol. 2023;14:1073388.

    Google Scholar 

  96. Huml M, Kobr J, Siala K, Varvařovská J, Pomahačová R, Karlíková M, et al. Gut peptide hormones and pediatric type 1 diabetes mellitus. Physiol Res. 2011;60:647–58.

    CAS  PubMed  Google Scholar 

  97. Guyton J, Jeon M, Brooks A. Glucagon-like peptide 1 receptor agonists in type 1 diabetes mellitus. Am J Health Syst Pharm AJHP J Am Soc Health Syst Pharm. 2019;76:1739–48.

    Google Scholar 

  98. Mani BK, Uchida A, Lee Y, Osborne-Lawrence S, Charron MJ, Unger RH, et al. Hypoglycemic effect of combined ghrelin and glucagon receptor blockade. Diabetes. 2017;66:1847–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol. 2019;15:226–37.

    CAS  PubMed  Google Scholar 

  100. Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: Similarities and differences: similarities and differences of GIP and GLP-1. J Diabetes Investig. 2010;1:8–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoe B, Nguyen Heimbürger SM, Gasbjerg LS, Lynggaard MB, Hartmann B, Holst JJ, et al. 89-LB: the effect of GIP on plasma glucose in a setting of prandial insulin overdose and physical activity after meal intake in patients with type 1 diabetes. Diabetes. 2020;69 Suppl 1:89–LB.

    Google Scholar 

  102. Polak JM, Bloom S, Coulling I, Pearse AG. Immunofluorescent localization of enteroglucagon cells in the gastrointestinal tract of the dog. Gut. 1971;12:311–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. J Clin Invest. 2015;125:908–17.

    PubMed  PubMed Central  Google Scholar 

  104. Camilleri M. Integrated upper gastrointestinal response to food intake. Gastroenterology. 2006;131:640–58.

    CAS  PubMed  Google Scholar 

  105. Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev. 2015;95:513–48.

    CAS  PubMed  Google Scholar 

  106. Raman VS, Mason KJ, Rodriguez LM, Hassan K, Yu X, Bomgaars L, et al. The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care. 2010;33:1294–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Janzen KM, Steuber TD, Nisly SA. GLP-1 agonists in type 1 diabetes mellitus. Ann Pharmacother. 2016;50:656–65.

    PubMed  Google Scholar 

  108. Watson LE, Xie C, Wang X, Li Z, Phillips LK, Sun Z, et al. Gastric emptying in patients with well-controlled type 2 diabetes compared with young and older control subjects without diabetes. J Clin Endocrinol Metab. 2019;104:3311–9.

    PubMed  Google Scholar 

  109. Perano SJ, Rayner CK, Kritas S, Horowitz M, Donaghue K, Mpundu-Kaambwa C, et al. Gastric emptying is more rapid in adolescents with type 1 diabetes and impacts on postprandial glycemia. J Clin Endocrinol Metab. 2015;100:2248–53.

    CAS  PubMed  Google Scholar 

  110. Marathe CS, Rayner CK, Jones KL, Horowitz M. Relationships between gastric emptying, postprandial glycemia, and incretin hormones. Diabetes Care. 2013;36:1396–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Czenczek-Lewandowska E, Grzegorczyk J, Mazur A. Physical activity in children and adolescents with type 1 diabetes and contem-porary methods of its assessment. Pediatr Endocrinol Diabetes Metab. 2018;24:179–84.

    PubMed  Google Scholar 

  112. Minnock D, Annibalini G, Le Roux CW, Contarelli S, Krause M, Saltarelli R, et al. Effects of acute aerobic, resistance and combined exercises on 24-h glucose variability and skeletal muscle signalling responses in type 1 diabetics. Eur J Appl Physiol. 2020;120:2677–91.

    CAS  PubMed  Google Scholar 

  113. Cuenca-García M, Jago R, Shield JPH, Burren CP. How does physical activity and fitness influence glycaemic control in young people with Type 1 diabetes? Diabet Med J Br Diabet Assoc. 2012;29:e369–76.

    Google Scholar 

  114. Campbell MD, Walker M, Trenell MI, Stevenson EJ, Turner D, Bracken RM, et al. A low–glycemic index meal and bedtime snack prevents postprandial hyperglycemia and associated rises in inflammatory markers, providing protection from early but not late nocturnal hypoglycemia following evening exercise in type 1 diabetes. Diabetes Care. 2014;37:1845–53.

    CAS  PubMed  Google Scholar 

  115. Campbell MD, Walker M, Trenell MI, Jakovljevic DG, Stevenson EJ, Bracken RM, et al. Large pre- and postexercise rapid-acting insulin reductions preserve glycemia and prevent early- but not late-onset hypoglycemia in patients with type 1 diabetes. Diabetes Care. 2013;36:2217–24.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

AM, GM and CES performed the literature search and wrote the manuscript; AM, GM, CES and CM discussed and edited the manuscript. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Alice Maguolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maguolo, A., Mazzuca, G., Smart, C.E. et al. Postprandial glucose metabolism in children and adolescents with type 1 diabetes mellitus: potential targets for improvement. Eur J Clin Nutr 78, 79–86 (2024). https://doi.org/10.1038/s41430-023-01359-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-023-01359-8

Search

Quick links