Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Causal relationship between coffee intake and neurological diseases: a Mendelian randomization study

Abstract

Background

Previous observational studies focused on the association of coffee consumption and neurological disease. However, it is not known whether these associations are causal.

Methods

We used Mendelian randomization (MR) study to assess the causal relationship of coffee intake with the risk of neurological diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, stroke, and migraine. Single-nucleotide polymorphisms (SNPs) which had genetic statistical significance with coffee intake were used as instrumental variable (IV). Genetic instruments were stretched from the MRC-IEU (MRC Integrative Epidemiology Unit) analysis on the UK Biobank. We performed MR analyses using the inverse variance weighted (IVW) method as the main approach. Sensitivity analyses were further performed using MR-Egger and MR-PRESSO to assess the robustness.

Results

In the MR analysis, 40 SNPs were selected as IV, the F statistics for all SNPs ranged from 16 to 359. In IVW approach, our results provide genetic evidence supporting a potential causal association between coffee intake and a lower risk of migraine (OR = 0.528, 95% CI = 0.342–0.817, P = 0.004) and migraine with aura (OR = 0.374, 95% CI = 0.208–0.672, P = 0.001). However, we found no significant association between coffee intake and other neurological diseases along with their subtypes in this MR study.

Conclusion

Using genetic data, our MR study found significant evidence supporting a causal association between coffee intake and migraine. This suggests that coffee consumption is likely a trigger or a prevention strategy for migraine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The overview of the study design.
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its additional files.

References

  1. Nehlig A. Effects of coffee/caffeine on brain health and disease: what should I tell my patients? Pract Neurol. 2016;16:89–95. https://doi.org/10.1136/practneurol-2015-001162.

    Article  PubMed  Google Scholar 

  2. Herden L, Weissert R. The impact of coffee and caffeine on multiple sclerosis compared to other neurodegenerative diseases. Front Nutr. 2018;5:133 https://doi.org/10.3389/fnut.2018.00133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shao C, Tang H, Wang X, He J. Coffee consumption and stroke risk: evidence from a systematic review and meta-analysis of more than 2.4 million men and women. J Stroke Cerebrovasc Dis. 2021;30:105452. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105452.

    Article  PubMed  Google Scholar 

  4. Baratloo A, Mirbaha S, Delavar Kasmaei H, Payandemehr P, Elmaraezy A, Negida A. Intravenous caffeine citrate vs. magnesium sulfate for reducing pain in patients with acute migraine headache; a prospective quasi-experimental study. Korean J Pain. 2017;30:176–82. https://doi.org/10.3344/kjp.2017.30.3.176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan L, Hong CT, Bai CH. Coffee consumption and the risk of cerebrovascular disease: a meta-analysis of prospective cohort studies. BMC Neurol. 2021;21:380. https://doi.org/10.1186/s12883-021-02411-5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med. 2012;366:1891–904. https://doi.org/10.1056/NEJMoa1112010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barrea L, Pugliese G, Frias-Toral E, El Ghoch M, Castellucci B, Chapela SP, et al. Coffee consumption, health benefits and side effects: a narrative review and update for dietitians and nutritionists. Crit Rev Food Sci Nutr. 2023;63:1238–61. https://doi.org/10.1080/10408398.2021.1963207.

    Article  PubMed  Google Scholar 

  8. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2014;129:643–59. https://doi.org/10.1161/CIRCULATIONAHA.113.005925.

    Article  CAS  PubMed  Google Scholar 

  9. Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19:255–65. https://doi.org/10.1016/S1474-4422(19)30411-9.

    Article  PubMed  Google Scholar 

  10. Group GBDNDC. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017;16:877–97. https://doi.org/10.1016/S1474-4422(17)30299-5.

    Article  Google Scholar 

  11. Collaborators GBDN. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80. https://doi.org/10.1016/S1474-4422(18)30499-X.

    Article  Google Scholar 

  12. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63. https://doi.org/10.1002/sim.3034.

    Article  MathSciNet  PubMed  Google Scholar 

  13. Carter AR, Sanderson E, Hammerton G, Richmond RC, Davey Smith G, Heron J, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol. 2021;36:465–78. https://doi.org/10.1007/s10654-021-00757-1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318:1925–6. https://doi.org/10.1001/jama.2017.17219.

    Article  PubMed  Google Scholar 

  15. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779 https://doi.org/10.1371/journal.pmed.1001779.

    Article  Google Scholar 

  16. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30. https://doi.org/10.1038/s41588-019-0358-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18:1091–102. https://doi.org/10.1016/S1474-4422(19)30320-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R, et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron. 2018;97(6):1268–83.e6. https://doi.org/10.1016/j.neuron.2018.02.027.

    Article  CAS  Google Scholar 

  19. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365. https://doi.org/10.1126/science.aav7188

  20. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50:524–37. https://doi.org/10.1038/s41588-018-0058-3. e-pub ahead of print 2018/03/14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat Commun. 2018;9:5269 https://doi.org/10.1038/s41467-018-07524-z.

    Article  CAS  ADS  Google Scholar 

  22. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–7. https://doi.org/10.1093/bioinformatics/btv402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8. https://doi.org/10.1038/s41588-018-0099-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28:30–42. https://doi.org/10.1097/EDE.0000000000000559.

    Article  PubMed  Google Scholar 

  25. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25. https://doi.org/10.1093/ije/dyv080.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42:1497–501. https://doi.org/10.1093/ije/dyt179.

    Article  PubMed  Google Scholar 

  27. Lee MJ, Choi HA, Choi H, Chung CS. Caffeine discontinuation improves acute migraine treatment: a prospective clinic-based study. J Headache Pain. 2016;17:71. https://doi.org/10.1186/s10194-016-0662-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bigal ME, Sheftell FD, Rapoport AM, Tepper SJ, Lipton RB. Chronic daily headache: identification of factors associated with induction and transformation. Headache. 2002;42:575–81. https://doi.org/10.1046/j.1526-4610.2002.02143.x.

    Article  PubMed  Google Scholar 

  29. VanderPluym JH, Halker Singh RB, Urtecho M, Morrow AS, Nayfeh T, Torres Roldan VD, et al. Acute treatments for episodic migraine in adults: a systematic review and meta-analysis. JAMA. 2021;325:2357–69. https://doi.org/10.1001/jama.2021.7939.

    Article  CAS  PubMed  Google Scholar 

  30. Nowaczewska M, Wicinski M, Kazmierczak W. The ambiguous role of caffeine in migraine headache: from trigger to treatment. Nutrients. 2020;12. https://doi.org/10.3390/nu12082259.

  31. Galeotti N, Ghelardini C, Grazioli I, Uslenghi C. Indomethacin, caffeine and prochlorperazine alone and combined revert hyperalgesia in in vivo models of migraine. Pharm Res. 2002;46:245–50. https://doi.org/10.1016/s1043-6618(02)00126-3.

    Article  CAS  Google Scholar 

  32. Tai MS, Yap JF, Goh CB. Dietary trigger factors of migraine and tension-type headache in a South East Asian country. J Pain Res. 2018;11:1255–61. https://doi.org/10.2147/JPR.S158151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng H, Shi YZ, Liang JT, Lu LL, Chen M. Modifiable factors for migraine prophylaxis: a Mendelian randomization analysis. Front Pharm. 2023;14:1010996. https://doi.org/10.3389/fphar.2023.1010996.

    Article  CAS  Google Scholar 

  34. Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s disease: insight into the role of Nrf-2 and A2AR signaling. Antioxidants. 2020;9. https://doi.org/10.3390/antiox9090902.

  35. Pourshahidi LK, Navarini L, Petracco M, Strain JJ. A comprehensive overview of the risks and benefits of coffee consumption. Compr Rev Food Sci Food Saf. 2016;15:671–84. https://doi.org/10.1111/1541-4337.12206.

    Article  PubMed  Google Scholar 

  36. Butt MS, Sultan MT. Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr. 2011;51:363–73. https://doi.org/10.1080/10408390903586412.

    Article  CAS  PubMed  Google Scholar 

  37. Roshan MH, Tambo A, Pace NP. Potential role of caffeine in the treatment of Parkinson’s disease. Open Neurol J. 2016;10:42–58. https://doi.org/10.2174/1874205X01610010042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakaso K, Ito S, Nakashima K. Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson’s disease model of SH-SY5Y cells. Neurosci Lett. 2008;432:146–50. https://doi.org/10.1016/j.neulet.2007.12.034.

    Article  CAS  PubMed  Google Scholar 

  39. West AB. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp Neurol. 2017;298:236–45. https://doi.org/10.1016/j.expneurol.2017.07.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boia R, Ambrosio AF, Santiago AR. Therapeutic opportunities for caffeine and A2A receptor antagonists in retinal diseases. Ophthalmic Res. 2016;55:212–8. https://doi.org/10.1159/000443893.

    Article  CAS  PubMed  Google Scholar 

  41. Vicente SJ, Ishimoto EY, Torres EA. Coffee modulates transcription factor Nrf2 and highly increases the activity of antioxidant enzymes in rats. J Agric Food Chem. 2014;62:116–22. https://doi.org/10.1021/jf401777m.

    Article  CAS  PubMed  Google Scholar 

  42. Jo MG, Ikram M, Jo MH, Yoo L, Chung KC, Nah SY, et al. Gintonin mitigates MPTP-induced loss of nigrostriatal dopaminergic neurons and accumulation of α-synuclein via the Nrf2/HO-1 pathway. Mol Neurobiol. 2019;56:39–55. https://doi.org/10.1007/s12035-018-1020-1.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z, Wang M, Yuan S, Cai H, Zhu SG, Liu X. Genetically predicted coffee consumption and risk of Alzheimer’s disease and stroke. J Alzheimers Dis. 2021;83:1815–23. https://doi.org/10.3233/jad-210678.

    Article  CAS  PubMed  Google Scholar 

  44. Domenighetti C, Sugier PE, Sreelatha AAK, Schulte C, Grover S, Mohamed O, et al. Mendelian randomisation study of smoking, alcohol, and coffee drinking in relation to Parkinson’s disease. J Parkinsons Dis. 2022;12:267–82. https://doi.org/10.3233/jpd-212851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Z, Wang M, Liu X. Genetically predicted coffee consumption and amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2022;23:575–9. https://doi.org/10.1080/21678421.2022.2047204.

    Article  CAS  PubMed  Google Scholar 

  46. Lu H, Wu PF, Zhang W, Xia K. Coffee consumption is not associated with risk of multiple sclerosis: a Mendelian randomization study. Mult Scler Relat Disord. 2020;44:102300 https://doi.org/10.1016/j.msard.2020.102300.

    Article  PubMed  Google Scholar 

  47. Zhang Z, Wang M, Yuan S, Liu X. Alcohol, coffee, and milk intake in relation to epilepsy risk. Nutrients. 2022;14. https://doi.org/10.3390/nu14061153.

  48. Qian Y, Ye D, Huang H, Wu DJH, Zhuang Y, Jiang X, et al. Coffee consumption and risk of stroke: a Mendelian randomization study. Ann Neurol. 2020;87:525–32. https://doi.org/10.1002/ana.25693.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We extend our sincere thanks to Ben Elsworth for releasing GWAS summary statistics for coffee intake. The AD data was obtained from the IGAP consortium, the PD data from the IPDGC consortium, the ALS data from the AVS consortium, the MS data from the IMSGC consortium, and the epilepsy and its subtypes data from the ILAE consortium. We also thank the MEGASTROKE Consortium for providing summary statistics data for stroke and its subtypes. The data for nontraumatic intracranial hemorrhage, subarachnoid hemorrhage, and migraine were obtained from the FinnGen consortium. We sincerely thank all participants for sharing the genome-wide summary statistics.

Funding

This research was funded by the National Natural Science Foundation of China (82260225), the Natural Science Foundation of Jiangxi Province (20202BAB216043), and Jiangxi Province Postgraduate Innovation Special Fund Project (YC2022-B061).

Author information

Authors and Affiliations

Authors

Contributions

JZ, MZ, and DZ designed the research. JZ, YL, GX, XC, and WW acquired and analyzed data. JZ drafted the manuscript. MZ and DZ made critical revisions of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Daying Zhang or Mengye Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Y., Xu, G. et al. Causal relationship between coffee intake and neurological diseases: a Mendelian randomization study. Eur J Clin Nutr 78, 114–119 (2024). https://doi.org/10.1038/s41430-023-01355-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-023-01355-y

Search

Quick links