Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Investigation of seasonality of human spontaneous physical activity and energy expenditure in respiratory chamber in Phoenix, Arizona

Abstract

Objective

The existence of seasonal changes in energy metabolism is uncertain. We investigated the relationship between the seasons and spontaneous physical activity (SPA), energy expenditure (EE), and other components measured in a respiratory chamber.

Methods

Between 1985–2005, 671 healthy adults (aged 28.8 ± 7.1 years; 403 men) in Phoenix, Arizona had a 24-hour stay in the respiratory chamber equipped with radar sensors; SPA (expressed as a percentage over the time interval), the energy cost of SPA, EE, and respiratory exchange ratio (RER) were measured.

Results

In models adjusted for known covariates, SPA (%) was lower during summer (7.2 ± 2.9, p = 0.0002), spring (7.5 ± 2.9, p = 0.025), and fall (7.6 ± 3, p = 0.038) compared to winter (8.3 ± 3.5, reference). Conversely, energy cost of SPA (kcal/h/%) was higher during summer (2.18 ± 0.83, p = 0.0008), spring (2.186 ± 0.83, p = 0.017), and fall (2.146 ± 0.75, p = 0.038) compared to winter (2.006 ± 0.76). Protein (292 ± 117 kcal/day, β = −21.2, p = 0.08) oxidation rates was lower in the summer compared to winter. Carbohydrate and lipid oxidation rates (kcal/day) did not differ across seasons. RER and 24-h EE did not differ by season.

Conclusion

SPA, representing fidgeting-like behavior in the chamber, demonstrated a winter peak and summer nadir in humans living in a desert climate. These findings indicate that the physiological propensity for movement may be affected by seasonal factors.

Clinical trial registration

ClinicalTrials.gov identifiers: NCT00340132, NCT00342732

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spontaneous physical activity, awake and fed thermogenesis, and 24-h total and sleep energy expenditure.
Fig. 2: Respiratory exchange ratio and substrate oxidation.
Fig. 3 : Energy cost of spontaneous physical activity and energy expenditure in the inactive state.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during this study will be made available from the corresponding author upon reasonable request pending application and approval.

References

  1. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557–67. https://doi.org/10.1016/S0140-6736(10)62037-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hales CM, National Center for Health S. Prevalence of obesity and severe obesity among adults: United States, 2017–2018, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, 2020.

  3. Garland T Jr., Schutz H, Chappell MA, Keeney BK, Meek TH, Copes LE, et al. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol. 2011;214:206–29. https://doi.org/10.1242/jeb.048397

    Article  Google Scholar 

  4. Salmon J, Owen N, Crawford D, Bauman A, Sallis JF. Physical activity and sedentary behavior: a population-based study of barriers, enjoyment, and preference. Health Psychol. 2003;22:178–88. https://doi.org/10.1037//0278-6133.22.2.178

    Article  Google Scholar 

  5. Hut RA, Beersma DG. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos Trans R Soc Lond B Biol Sci. 2011;366:2141–54. https://doi.org/10.1098/rstb.2010.0409

    Article  CAS  PubMed Central  Google Scholar 

  6. Foster RG, Roenneberg T. Human responses to the geophysical daily, annual and lunar cycles. Curr Biol. 2008;18:R784–R794. https://doi.org/10.1016/j.cub.2008.07.003

    Article  CAS  Google Scholar 

  7. Lovegrove BG. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B. 2003;173:87–112. https://doi.org/10.1007/s00360-002-0309-5

    Article  CAS  PubMed  Google Scholar 

  8. Storey KB, Storey JM. Aestivation: signaling and hypometabolism. J Exp Biol. 2012;215:1425–33. https://doi.org/10.1242/jeb.054403

    Article  CAS  PubMed  Google Scholar 

  9. Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest. 2017;127:1944–59. https://doi.org/10.1172/JCI88532

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gutman R, Yosha D, Choshniak I, Kronfeld-Schor N. Two strategies for coping with food shortage in desert golden spiny mice. Physiol Behav. 2007;90:95–102. https://doi.org/10.1016/j.physbeh.2006.08.033

    Article  CAS  PubMed  Google Scholar 

  11. Bronson FH. Are humans seasonally photoperiodic? J Biol Rhythms. 2004;19:180–92. https://doi.org/10.1177/0748730404264658

    Article  CAS  PubMed  Google Scholar 

  12. Tucker P, Gilliland J. The effect of season and weather on physical activity: a systematic review. Public Health. 2007;121:909–22. https://doi.org/10.1016/j.puhe.2007.04.009

    Article  CAS  PubMed  Google Scholar 

  13. Beighle A, Alderman B, Morgan CF, Le Masurier G. Seasonality in children’s pedometer-measured physical activity levels. Res Q Exerc Sport. 2008;79:256–60. https://doi.org/10.1080/02701367.2008.10599488

    Article  PubMed  Google Scholar 

  14. Kolle E, Steene-Johannessen J, Andersen LB, Anderssen SA Seasonal variation in objectively assessed physical activity among children and adolescents in Norway: a cross-sectional study. Int J Behav Nutr Phy 2009; 6. https://doi.org/10.1186/1479-5868-6-36

  15. Hjorth MF, Chaput JP, Michaelsen K, Astrup A, Tetens I, Sjodin A. Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8-11 year-old Danish children: a repeated-measures study. BMC Public Health. 2013;13:808. https://doi.org/10.1186/1471-2458-13-808

    Article  PubMed  PubMed Central  Google Scholar 

  16. Atkin AJ, Sharp SJ, Harrison F, Brage S, Van Sluijs EM. Seasonal Variation in Children’s Physical Activity and Sedentary Time. Med Sci Sports Exerc. 2016;48:449–56. https://doi.org/10.1249/MSS.0000000000000786

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baranowski T, Thompson WO, DuRant RH, Baranowski J, Puhl J. Observations on physical activity in physical locations: age, gender, ethnicity, and month effects. Res Q Exerc Sport. 1993;64:127–33. https://doi.org/10.1080/02701367.1993.10608789

    Article  CAS  PubMed  Google Scholar 

  18. Goran MI, Nagy TR, Gower BA, Mazariegos M, Solomons N, Hood V, et al. Influence of sex, seasonality, ethnicity, and geographic location on the components of total energy expenditure in young children: implications for energy requirements. Am J Clin Nutr. 1998;68:675–82. https://doi.org/10.1093/ajcn/68.3.675

    Article  CAS  PubMed  Google Scholar 

  19. Plasqui G, Westerterp KR. Seasonal variation in total energy expenditure and physical activity in Dutch young adults. Obes Res. 2004;12:688–94. https://doi.org/10.1038/oby.2004.80

    Article  PubMed  Google Scholar 

  20. Humpel N, Owen N, Leslie E. Environmental factors associated with adults’ participation in physical activity - A review. Am J Prev Med. 2002;22:188–99. https://doi.org/10.1016/S0749-3797(01)00426-3

    Article  PubMed  Google Scholar 

  21. Travis KT, Ando T, Stinson EJ, Krakoff J, Gluck ME, Piaggi P, et al. Trends in spontaneous physical activity and energy expenditure among adults in a respiratory chamber, 1985 to 2005. Obesity (Silver Spring). 2022;30:645–54. https://doi.org/10.1002/oby.23347

    Article  PubMed  Google Scholar 

  22. Xi B, Liang Y, He T, Reilly KH, Hu Y, Wang Q, et al. Secular trends in the prevalence of general and abdominal obesity among Chinese adults, 1993-2009. Obes Rev. 2012;13:287–96. https://doi.org/10.1111/j.1467-789X.2011.00944.x

    Article  CAS  PubMed  Google Scholar 

  23. Piaggi P, Thearle MS, Bogardus C, Krakoff J. Lower energy expenditure predicts long-term increases in weight and fat mass. J Clin Endocrinol Metab. 2013;98:E703–707. https://doi.org/10.1210/jc.2012-3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med. 1988;318:467–72. https://doi.org/10.1056/NEJM198802253180802

    Article  CAS  PubMed  Google Scholar 

  25. Zurlo F, Lillioja S, Espositodelpuente A, Nyomba BL, Raz I, Saad MF, et al. Low Ratio of Fat to Carbohydrate Oxidation as Predictor of Weight-Gain - Study of 24-H Rq. American Journal of Physiology. 1990;259:E650–E657.

    CAS  PubMed  Google Scholar 

  26. Piaggi P, Thearle MS, Krakoff J, Votruba SB. Higher Daily Energy Expenditure and Respiratory Quotient, Rather Than Fat-Free Mass, Independently Determine Greater ad Libitum Overeating. J Clin Endocrinol Metab. 2015;100:3011–20. https://doi.org/10.1210/jc.2015-2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pannacciulli N, Salbe AD, Ortega E, Venti CA, Bogardus C, Krakoff J. The 24-h carbohydrate oxidation rate in a human respiratory chamber predicts ad libitum food intake. Am J Clin Nutr. 2007;86:625–32. https://doi.org/10.1093/ajcn/86.3.625

    Article  CAS  PubMed  Google Scholar 

  28. Salbe AD, Tschop MH, DelParigi A, Venti CA, Tataranni PA. Negative relationship between fasting plasma ghrelin concentrations and ad libitum food intake. J Clin Endocr Metab. 2004;89:2951–6. https://doi.org/10.1210/jc.2003-032145

    Article  CAS  PubMed  Google Scholar 

  29. Ferraro R, Boyce VL, Swinburn B, De Gregorio M, Ravussin E. Energy cost of physical activity on a metabolic ward in relationship to obesity. Am J Clin Nutr. 1991;53:1368–71. https://doi.org/10.1093/ajcn/53.6.1368

    Article  CAS  PubMed  Google Scholar 

  30. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care. 2003;26:3160–7. https://doi.org/10.2337/diacare.26.11.3160

    Article  Google Scholar 

  31. Tataranni PA, Ravussin E. Use of dual-energy X-ray absorptiometry in obese individuals. Am J Clin Nutr. 1995;62:730–4. https://doi.org/10.1093/ajcn/62.4.730

    Article  CAS  Google Scholar 

  32. Guo Y, Franks PW, Brookshire T, Antonio Tataranni P. The intra- and inter-instrument reliability of DXA based on ex vivo soft tissue measurements. Obes Res. 2004;12:1925–9. https://doi.org/10.1038/oby.2004.241

    Article  Google Scholar 

  33. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C. Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest. 1986;78:1568–78. https://doi.org/10.1172/JCI112749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abbott WG, Howard BV, Christin L, Freymond D, Lillioja S, Boyce VL, et al. Short-term energy balance: relationship with protein, carbohydrate, and fat balances. Am J Physiol. 1988;255:E332–337. https://doi.org/10.1152/ajpendo.1988.255.3.E332

    Article  CAS  PubMed  Google Scholar 

  35. Lusk G. Animal calorimetry. Twenty-fourth paper. Analysis of the oxidation of mixtures of carbohydrate and fat. A correction. J Biol Chem. 1924;59:41–42.

    Article  CAS  Google Scholar 

  36. Jequier E, Acheson K, Schutz Y. Assessment of energy expenditure and fuel utilization in man. Annu Rev Nutr. 1987;7:187–208. https://doi.org/10.1146/annurev.nu.07.070187.001155

    Article  CAS  PubMed  Google Scholar 

  37. Basolo A, Shah MH, Parthasarathy V, Parrington S, Walter M, Votruba SB, et al. Thigh Adipocyte Size is Inversely Related to Energy Intake and Respiratory Quotient in Healthy Women. Obesity (Silver Spring). 2020;28:1129–40. https://doi.org/10.1002/oby.22804

    Article  CAS  PubMed  Google Scholar 

  38. Piaggi P, Krakoff J, Bogardus C, Thearle MS. Lower “awake and fed thermogenesis” predicts future weight gain in subjects with abdominal adiposity. Diabetes. 2013;62:4043–51. https://doi.org/10.2337/db13-0785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Menne MJ, I Durre, B Korzeniewski, S McNeal, K Thomas, X Yin, et al. Global Historical Climatology Network - Daily (GHCN-Daily), Version 3. In: Center NNCD, (ed), 2012.

  40. Ellis BJ, Figueredo AJ, Brumbach BH, Schlomer GL. Fundamental Dimensions of Environmental Risk : The Impact of Harsh versus Unpredictable Environments on the Evolution and Development of Life History Strategies. Hum Nat. 2009;20:204–68. https://doi.org/10.1007/s12110-009-9063-7

    Article  PubMed  Google Scholar 

  41. Chang DC, Basolo A, Piaggi P, Votruba SB, Krakoff J. Hydration biomarkers and copeptin: relationship with ad libitum energy intake, energy expenditure, and metabolic fuel selection. Eur J Clin Nutr. 2020;74:158–66. https://doi.org/10.1038/s41430-019-0445-6

    Article  CAS  PubMed  Google Scholar 

  42. Ho JY, Goggins WB, Mo PKH, Chan EYY. The effect of temperature on physical activity: an aggregated timeseries analysis of smartphone users in five major Chinese cities. Int J Behav Nutr Phys Act. 2022;19:68 https://doi.org/10.1186/s12966-022-01285-1

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tendler A, Bar A, Mendelsohn-Cohen N, Karin O, Korem Kohanim Y, Maimon L et al. Hormone seasonality in medical records suggests circannual endocrine circuits. Proc Natl Acad Sci USA 2021; 118. https://doi.org/10.1073/pnas.2003926118

  44. Berglund L, Berne C, Svardsudd K, Garmo H, Melhus H, Zethelius B. Seasonal variations of insulin sensitivity from a euglycemic insulin clamp in elderly men. Ups J Med Sci. 2012;117:35–40. https://doi.org/10.3109/03009734.2011.628422

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ockene IS, Chiriboga DE, Stanek EJ 3rd, Harmatz MG, Nicolosi R, Saperia G, et al. Seasonal variation in serum cholesterol levels: treatment implications and possible mechanisms. Arch Intern Med. 2004;164:863–70. https://doi.org/10.1001/archinte.164.8.863

    Article  CAS  PubMed  Google Scholar 

  46. Dopico XC, Evangelou M, Ferreira RC, Guo H, Pekalski ML, Smyth DJ, et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat Commun. 2015;6:7000 https://doi.org/10.1038/ncomms8000

    Article  CAS  PubMed  Google Scholar 

  47. Kirsz K, Szczesna M, Molik E, Misztal T, Wojtowicz AK, Zieba DA. Seasonal changes in the interactions among leptin, ghrelin, and orexin in sheep. J Anim Sci. 2012;90:2524–31. https://doi.org/10.2527/jas.2011-4463

    Article  CAS  PubMed  Google Scholar 

  48. Boddum K, Hansen MH, Jennum PJ, Kornum BR. Cerebrospinal Fluid Hypocretin-1 (Orexin-A) Level Fluctuates with Season and Correlates with Day Length. PLoS One. 2016;11:e0151288 https://doi.org/10.1371/journal.pone.0151288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amati F, Dube JJ, Shay C, Goodpaster BH. Separate and combined effects of exercise training and weight loss on exercise efficiency and substrate oxidation. J Appl Physiol (1985). 2008;105:825–31. https://doi.org/10.1152/japplphysiol.90384.2008

    Article  PubMed  Google Scholar 

  50. Wucher V, Sodaei R, Amador R, Irimia M, Guigo R Day-night and seasonal variation of human gene expression across tissues. bioRxiv 2022. e-pub ahead of print 20220111; https://doi.org/10.1101/2021.02.28.433266

  51. Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. Am J Clin Nutr. 2000;72:1451–4. https://doi.org/10.1093/ajcn/72.6.1451

    Article  CAS  Google Scholar 

  52. Zurlo F, Ferraro RT, Fontvielle AM, Rising R, Bogardus C, Ravussin E. Spontaneous physical activity and obesity: cross-sectional and longitudinal studies in Pima Indians. Am J Physiol. 1992;263:E296–300. https://doi.org/10.1152/ajpendo.1992.263.2.E296

    Article  CAS  PubMed  Google Scholar 

  53. Snitker S, Tataranni PA, Ravussin E. Spontaneous physical activity in a respiratory chamber is correlated to habitual physical activity. Int J Obesity. 2001;25:1481–6. https://doi.org/10.1038/sj.ijo.0801746

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the volunteers who participated in our studies. We also thank the nursing, clinical, and dietary staff, and laboratory technicians of the Phoenix Epidemiology and Clinical Research Branch for conducting the examinations and for their valuable assistance and care of the volunteers.

Funding

Funding

This research was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Contributions

BNA: Conceptualization, Methodology, Formal Analysis, Investigation, Writing – Original Draft, Visualization. EJS, TCDB, TA, KTT, PP: Conceptualization, Methodology, Formal Analysis, Investigation, Writing – Review and Editing. DCC and JK: Conceptualization, Methodology, Formal Analysis, Investigation, Writing – Review and Editing, Visualization, Supervision. DCC is the guarantor of the work and, as such, had full access to all the study data and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Beyza N. Aydin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, B.N., Stinson, E.J., Cabeza De Baca, T. et al. Investigation of seasonality of human spontaneous physical activity and energy expenditure in respiratory chamber in Phoenix, Arizona. Eur J Clin Nutr 78, 27–33 (2024). https://doi.org/10.1038/s41430-023-01347-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-023-01347-y

Search

Quick links