Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition and Health (including climate and ecological aspects)

A retrospective analysis of vitamin B6 deficiency and associated changes of gut microbes in Crohn’s disease

Abstract

Background

Patients with inflammatory bowel diseases (IBD) are at risk of micronutrient deficiencies, particularly during flares. Vitamin B6 is required for the proper development of brain, nerves, and many other parts of the body. However, limited studies are available to describe the prevalence, relevance and consequences of vitamin B6 deficiencies in IBD. We aim to estimate the prevalence of vitamin B6 deficiencies in Crohn’s disease (CD) patients, to identify associated risk factors and to explore the alteration of intestinal microbiota related to vitamin B6 status.

Methods

A total of 360 CD patients and 55 ulcerative colitis (UC) patients from Shanghai Tenth People’s Hospital of Tongji University were included. Serum vitamin B6 concentrations were collected from the computerized laboratory data. The logistic regression was used for statistical analysis. Fecal-associated microbiota was also analyzed using 16S rRNA sequencing in another 20 CD patients (10 of vitamin B6 normal, 10 of vitamin B6 deficiency).

Results

The prevalence of vitamin B6 abnormality was significantly higher in CD than in UC patients. Logistic regression analysis showed that small bowel lesion, ileocolonic lesion (L3), extraintestinal manifestations, ileal resection, and usage of immunosuppressor were independently associated with abnormal vitamin B6 in CD. Interestingly, the microbial structure presented significant differences between two CD groups. PICRUSt2 prediction revealed that some enzymes and metabolic pathways between the two groups were significantly different.

Conclusions

Collectively, our analysis showed that vitamin B6 reduction occurred frequently in patients with CD and affected the intestinal flora of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The prevalence of vitamin B6 abnormity and the concentrations of vitamin B6.
Fig. 2: Correlation between clinical characteristics and vitamin B6 levels.
Fig. 3: Microbial diversity and differential enrichment analysis.
Fig. 4: Enrichment of genera in CD patients.
Fig. 5
Fig. 6: The analysis of differential enrichment of pathway.

Similar content being viewed by others

Data availability

The 16S rRNA sequencing raw data has been deposited in the NCBI’s Sequence Read Archive database (BioProject: PRJNA867573).

References

  1. Mooney S, Leuendorf JE, Hendrickson C, Hellmann H. Vitamin B6: a long known compound of surprising complexity. Molecules. 2009;14:329–51. https://doi.org/10.3390/molecules14010329.

    Article  CAS  PubMed  Google Scholar 

  2. Saibeni S, Cattaneo M, Vecchi M, Zighetti ML, Lecchi A, Lombardi R, et al. Low vitamin B6 plasma levels, a risk factor for thrombosis, in inflammatory bowel disease: role of inflammation and correlation with acute phase reactants. Am J Gastroenterol. 2003;98:112–7. https://doi.org/10.1111/j.1572-0241.2003.07160.x.

    Article  CAS  PubMed  Google Scholar 

  3. Mittenhuber G. Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microbiol Biotechnol. 2001;3:1–20.

    CAS  PubMed  Google Scholar 

  4. Tanaka T, Tateno Y, Gojobori T. Evolution of vitamin B6 (pyridoxine) metabolism by gain and loss of genes. Mol Biol Evol. 2005;22:243–50. https://doi.org/10.1093/molbev/msi011.

    Article  CAS  PubMed  Google Scholar 

  5. Friso S, Jacques PF, Wilson PW, Rosenberg IH, Selhub J. Low circulating vitamin B6 is associated with elevation of the inflammation marker C-reactive protein independently of plasma homocysteine levels. Circulation. 2001;103:2788–91. https://doi.org/10.1161/01.cir.103.23.2788.

    Article  CAS  PubMed  Google Scholar 

  6. Roubenoff R, Roubenoff RA, Selhub J, Nadeau MR, Cannon JG, Freeman LM, et al. Abnormal vitamin B6 status in rheumatoid cachexia. Association with spontaneous tumor necrosis factor alpha production and markers of inflammation. Arthritis Rheum. 1995;38:105–9. https://doi.org/10.1002/art.1780380116.

    Article  CAS  PubMed  Google Scholar 

  7. Massé PG, Boudreau J, Tranchant CC, Ouellette R, Ericson KL. Type 1 diabetes impairs vitamin B6 metabolism at an early stage of women’s adulthood. Appl Physiol Nutr Metab. 2012;37:167–75. https://doi.org/10.1139/h11-146.

    Article  PubMed  Google Scholar 

  8. Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet. 2017;389:1741–55. https://doi.org/10.1016/s0140-6736(16)31711-1.

    Article  PubMed  Google Scholar 

  9. Massironi S, Rossi RE, Cavalcoli FA, Della Valle S, Fraquelli M, Conte D. Nutritional deficiencies in inflammatory bowel disease: therapeutic approaches. Clin Nutr. 2013;32:904–10. https://doi.org/10.1016/j.clnu.2013.03.020.

    Article  CAS  PubMed  Google Scholar 

  10. Vagianos K, Bector S, McConnell J, Bernstein CN. Nutrition assessment of patients with inflammatory bowel disease. JPEN J Parenter Enter Nutr. 2007;31:311–9. https://doi.org/10.1177/0148607107031004311.

    Article  CAS  Google Scholar 

  11. Kuroki F, Iida M, Tominaga M, Matsumoto T, Hirakawa K, Sugiyama S, et al. Multiple vitamin status in Crohn’s disease. Correlation with disease activity. Dig Dis Sci. 1993;38:1614–8. https://doi.org/10.1007/bf01303168.

    Article  CAS  PubMed  Google Scholar 

  12. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2. https://doi.org/10.1128/mSystems.00191-16.

  13. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. https://doi.org/10.1093/nar/gks1219.

    Article  CAS  PubMed  Google Scholar 

  14. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41. https://doi.org/10.1128/aem.01541-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6. https://doi.org/10.1038/nmeth.f.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85. https://doi.org/10.1128/aem.01996-06.

    Article  CAS  PubMed Central  Google Scholar 

  17. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35. https://doi.org/10.1128/aem.71.12.8228-8235.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. https://doi.org/10.1186/gb-2011-12-6-r60.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010;5:1315–6. https://doi.org/10.1097/JTO.0b013e3181ec173d.

    Article  PubMed  Google Scholar 

  20. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8. https://doi.org/10.1038/s41587-020-0548-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. https://doi.org/10.1093/nar/28.1.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, et al. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res. 2020;48:D445–53. https://doi.org/10.1093/nar/gkz862.

    Article  CAS  PubMed  Google Scholar 

  24. Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148. https://doi.org/10.3389/fgene.2015.00148.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ulvik A, Midttun Ø, Pedersen ER, Eussen SJ, Nygård O, Ueland PM. Evidence for increased catabolism of vitamin B-6 during systemic inflammation. Am J Clin Nutr. 2014;100:250–5. https://doi.org/10.3945/ajcn.114.083196.

    Article  CAS  PubMed  Google Scholar 

  26. Pittayanon R, Lau JT, Leontiadis GI, Tse F, Yuan Y, Surette M, et al. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology. 2020;158:930–46.e931. https://doi.org/10.1053/j.gastro.2019.11.294.

    Article  PubMed  Google Scholar 

  27. Hedin CR, McCarthy NE, Louis P, Farquharson FM, McCartney S, Taylor K, et al. Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn’s disease and their unaffected siblings. Gut. 2014;63:1578–86. https://doi.org/10.1136/gutjnl-2013-306226.

    Article  CAS  PubMed  Google Scholar 

  28. Mulligan JH, Snell EE. Transport and metabolism of vitamin B6 in lactic acid bacteria. J Biol Chem. 1977;252:835–9.

    Article  CAS  PubMed  Google Scholar 

  29. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731–6. https://doi.org/10.1073/pnas.0804812105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17:223–37. https://doi.org/10.1038/s41575-019-0258-z.

    Article  PubMed  Google Scholar 

  31. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5. https://doi.org/10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–6. https://doi.org/10.1038/nature08530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 2021;13:1968257. https://doi.org/10.1080/19490976.2021.1968257.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun. 2018;9:3555. https://doi.org/10.1038/s41467-018-05901-2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165:1708–20. https://doi.org/10.1016/j.cell.2016.05.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–45. https://doi.org/10.1016/j.cell.2016.05.041.

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberg J, Ischebeck T, Commichau FM. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol Adv. 2017;35:31–40. https://doi.org/10.1016/j.biotechadv.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the participants for their involvement in the survey.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82070562, 9194230064, 91942312 and 81800486) and the Shanghai Rising-Star Program (20QA1407700).

Author information

Authors and Affiliations

Authors

Contributions

Data collation, statistical analysis and paper writing, ZF, JH and FG; data collection, paper revision, guidance, YZ and WW; research design, funding support, paper revision and review, ZL and WW. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yujie Zhao or Wei Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Institutional Review Board for Clinical Research of the Shanghai Tenth People’s Hospital of Tongji University. Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Hua, J., Guo, F. et al. A retrospective analysis of vitamin B6 deficiency and associated changes of gut microbes in Crohn’s disease. Eur J Clin Nutr 77, 1034–1043 (2023). https://doi.org/10.1038/s41430-023-01324-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-023-01324-5

Search

Quick links