Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Health issues and nutrition in the elderly

Predictive equations for fat mass in older Hispanic adults with excess adiposity using the 4‐compartment model as a reference method

Abstract

Background

Predictive equations are the best option for assessing fat mass in clinical practice due to their low cost and practicality. However, several factors, such as age, excess adiposity, and ethnicity can compromise the accuracy of the equations reported to date in the literature.

Objective

To develop and validate two predictive equations for estimating fat mass: one based exclusively on anthropometric variables, the other combining anthropometric and bioelectrical impedance variables using the 4C model as the reference method.

Subjects/Methods

This is a cross-sectional study that included 386 Hispanic subjects aged ≥60 with excess adiposity. Fat mass and fat-free mass were measured by the 4C model as predictive variables. Age, sex, and certain anthropometric and bioelectrical impedance data were considered as potential predictor variables. To develop and to validate the equations, the multiple linear regression analysis, and cross-validation protocol were applied.

Results

Equation 1 included weight, sex, and BMI as predictor variables, while equation 2 considered sex, weight, height squared/resistance, and resistance as predictor variables. R2 and RMSE values were ≥0.79 and ≤3.45, respectively, in both equations. The differences in estimates of fat mass by equations 1 and 2 were 0.34 kg and −0.25 kg, respectively, compared to the 4C model. This bias was not significant (p < 0.05).

Conclusions

The new predictive equations are reliable for estimating body composition and are interchangeable with the 4C model. Thus, they can be used in epidemiological and clinical studies, as well as in clinical practice, to estimate body composition in older Hispanic adults with excess adiposity.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Evaluation of Eq.#1.
Fig. 2: Evaluation of Eq.#2.
Fig. 3: Bland and Altman analysis of the agreement in FM between the “new equations” and the 4C model.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Salinas-Rodríguez A, la Cruz-Góngora D, Manrique-Espinoza B. Condiciones de salud, síndromes geriátricos y estado nutricional de los adultos mayores en México. Salud pública de méxico. 2020;62:6.

    Google Scholar 

  2. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.

    CAS  PubMed  Article  Google Scholar 

  3. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363:2211–9.

    CAS  PubMed  Article  Google Scholar 

  4. Patterson RE, Frank LL, Kristal AR, White E. A comprehensive examination of health conditions associated with obesity in older adults. Am J Prevent Med. 2004;27:385–90.

    Article  Google Scholar 

  5. Vincent HK, Vincent KR, Lamb KM. Obesity and mobility disability in the older adult. Obes Rev. 2010;11:568–79.

    CAS  PubMed  Article  Google Scholar 

  6. Wannamethee SG, Shaper AG, Whincup P, Walker M. Overweight and obesity and the burden of disease and disability in elderly men. Int J Obes. 2004;28:1374–82.

    Article  Google Scholar 

  7. Winter JE, MacInnis RJ, Wattanapenpaiboon N, Nowson CA. BMI and all-cause mortality in older adults: a meta-analysis. Am J Clin Nutr. 2014;99:875–90.

    CAS  PubMed  Article  Google Scholar 

  8. Meijers JM, Schols JM, Soeters PB, Halfens RJ. Defining malnutrition: mission or mission impossible? Nutrition. 2010;26:432–40.

    CAS  PubMed  Article  Google Scholar 

  9. WHO. Obesity: preventing and managing the global epidemic. Geneva, Switzerland. WHO; 2000.

  10. Dulloo AG, Jacquet J, Solinas G, Montani J-P, Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes. 2010;34:S4–S17.

    Article  Google Scholar 

  11. Okorodudu D, Jumean M, Montori VM, Romero-Corral A, Somers V, Erwin P, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes. 2010;34:791–9.

    CAS  Article  Google Scholar 

  12. Kjær I, Kolle E, Hansen B, Anderssen S, Torstveit M. Obesity prevalence in Norwegian adults assessed by body mass index, waist circumference and fat mass percentage. Clin Obes. 2015;5:211–8.

    PubMed  Article  Google Scholar 

  13. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell M, Korinek JE, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes. 2008;32:959–66.

    CAS  Article  Google Scholar 

  14. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS ONE. 2009;4:e7038.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Deurenberg P, van der Kooij K, Evers P, Hulshof T. Assessment of body composition by bioelectrical impedance in a population aged greater than 60 y. Am J Clin Nutr. 1990;51:3–6.

    CAS  PubMed  Article  Google Scholar 

  16. Cohn S, Vaswani A, Yasumura S, Yuen K, Ellis K. Improved models for determination of body fat by in vivo neutron activation. Am J Clin Nutr. 1984;40:255–9.

    CAS  PubMed  Article  Google Scholar 

  17. Jiang Y, Zhang Y, Jin M, Gu Z, Pei Y, Meng P. Aged-related changes in body composition and association between body composition with bone mass density by body mass index in Chinese Han men over 50-year-old. PLoS ONE. 2015;10:e0130400.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Schoeller DA. Changes in total body water with age. Am J Clin Nutr. 1989;50:1176–81.

    CAS  PubMed  Article  Google Scholar 

  19. Goran MI, Toth MJ, Poehlman ET. Cross‐validation of anthropometric and bioelectrical resistance prediction equations for body composition in older people using the 4‐compartment model as a criterion method. J Am Geriatrics Soc. 1997;45:837–43.

    CAS  Article  Google Scholar 

  20. Alemán-Mateo H, Lee S, Javed F, Thornton J, Heymsfield S, Pierson R, et al. Elderly Mexicans have less muscle and greater total and truncal fat compared to African-Americans and Caucasians with the same BMI. J Nutr, Health Aging. 2009;13:919–23.

    Article  Google Scholar 

  21. Deurenberg P, Yap M, Van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes. 1998;22:1164–71.

    CAS  Article  Google Scholar 

  22. Werkman A, Deurenberg-Yap M, Schmidt G, Deurenberg P. A comparison between composition and density of the fat-free mass of young adult Singaporean Chinese and Dutch Caucasians. Ann Nutr Metab. 2000;44:235–42.

    CAS  PubMed  Article  Google Scholar 

  23. Baumgartner RN, Heymsfield SB, Lichtman S, Wang J, Pierson RN Jr. Body composition in elderly people: effect of criterion estimates on predictive equations. Am J Clin Nutr. 1991;53:1345–53.

    CAS  PubMed  Article  Google Scholar 

  24. Van der Ploeg G, Gunn S, Withers R, Modra A. Use of anthropometric variables to predict relative body fat determined by a four-compartment body composition model. Eur J Clin Nutr. 2003;57:1009–16.

    PubMed  Article  Google Scholar 

  25. González-Arellanes R, Urquidez-Romero R, Rodríguez-Tadeo A, Esparza-Romero J, Méndez-Estrada RO, Ramírez-López E, et al. Agreement between laboratory methods and the 4-compartment model in assessing fat mass in obese older Hispanic-American adults. Clin Nutr. 2020;40:3592–600.

  26. Heymsfield SB, Lichtman S, Baumgartner RN, Wang J, Kamen Y, Aliprantis A, et al. Body composition of humans: comparison of two improved four-compartment models that differ in expense, technical complexity, and radiation exposure. Am J Clin Nutr. 1990;52:52–8.

    CAS  PubMed  Article  Google Scholar 

  27. Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72:694–701.

    CAS  PubMed  Article  Google Scholar 

  28. Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr. 2003;77:331–40.

    CAS  PubMed  Article  Google Scholar 

  29. Dey D, Bosaeus I, Lissner L, Steen B. Body composition estimated by bioelectrical impedance in the Swedish elderly. Development of population-based prediction equation and reference values of fat-free mass and body fat for 70-and 75-y olds. Eur J Clin Nutr. 2003;57:909–16.

    CAS  PubMed  Article  Google Scholar 

  30. Huerta Huerta R, Esparza-Romero J, Urquidez R, Pacheco BI, Valencia ME, Alemán-Mateo H. Validez de una ecuación basada en antropometría para estimar la grasa corporal en adultos mayores. Archivos latinoamericanos de nutrición. 2007;57:357–65.

    Google Scholar 

  31. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PloS one. 2009;4:9.

    Google Scholar 

  32. Eastman R, Vinicor F. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183.

    Article  Google Scholar 

  33. de la Iglesiaa JM, DueñasHerrerob R, Vilchesa MCO, Tabernéa CA, Colomerc CA, Luquec RL. Adaptación y validación al castellano del cuestionario de Pfeiffer (SPMSQ) para detectar la existencia de deterioro cognitivo en personas mayores e 65 años. Med Clínica. 2001;117:129–34.

    Article  Google Scholar 

  34. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9:179–86.

    CAS  PubMed  Article  Google Scholar 

  35. Piedra PD, Fuentes GO, Gómez RH, Cervantes-Villagrana RD, Presno-Bernal JM, Gómez LEA. Determinación de los intervalos de referencia de biometría hemática en población mexicana. Revista Mexicana de Patología Clínica y Medicina de. Laboratorio. 2012;59:243–50.

    Google Scholar 

  36. Aleman-Mateo H, Huerta R, Esparza-Romero J, Méndez R, Urquidez R, Valencia M. Body composition by the four-compartment model: validity of the BOD POD for assessing body fat in Mexican elderly. Eur J Clin Nutr. 2007;61:830–6.

    CAS  PubMed  Article  Google Scholar 

  37. IAEA. IAEA Human Health Series No. 12. Introduction to Body Composition Assessment using the Deuterium Dilution Technique with Analysis of Saliva Samples by Fourier Transform Infrared Spectrometry. Vienna, Austria. Marketing and Sale Unit, International Atomic Energy Agency, Visitors…; 2010.

  38. Ramos RL, Armán JA, Galeano NA, Hernández AM, Gómez JG, Molinero JG. Dual energy X-ray absorptimetry: fundamentals, methodology, and clinical applications. Radiolía. 2012;54:410–23.

    Article  Google Scholar 

  39. Nickerson BS, Fedewa MV, Cicone Z, Esco MR. The relative accuracy of skinfolds compared to four-compartment estimates of body composition. Clin Nutr. 2020;39:1112–6.

    PubMed  Article  Google Scholar 

  40. Marfell-Jones MJ, Stewart A, De Ridder J. International standards for anthropometric assessment. The University of South Australia, The International Society For The Advancement Of Kinanthropometry, Underdale, SA, Australia. 2012.

  41. Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10.

    Article  Google Scholar 

  42. Donini L, Savina C, Rosano A, Cannella C. Systematic review of nutritional status evaluation and screening tools in the elderly. J Nutr Health Aging. 2007;11:421.

    CAS  PubMed  Google Scholar 

  43. Wells JC. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21:415–30.

    PubMed  Article  Google Scholar 

  44. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. J Chronic Dis. 1972;25:329–43.

    CAS  PubMed  Article  Google Scholar 

  45. Must A, Dallal GE, Dietz WH. Reference data for obesity: 85th and 95th percentiles of body mass index (wt/ht2) and triceps skinfold thickness. Am J Clin Nutr. 1991;53:839–46.

    CAS  PubMed  Article  Google Scholar 

  46. Cui Z, Truesdale KP, Cai J, Stevens J. Evaluation of anthropometric equations to assess body fat in adults: NHANES 1999-2004. Med Sci Sports Exerc. 2014;46:1147–58.

    PubMed  Article  Google Scholar 

  47. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23:1226–43.

    PubMed  Article  Google Scholar 

  48. Mialich MS, Sicchieri JF, Junior AJ. Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int J Clin Nutr. 2014;2:1–10.

    Google Scholar 

  49. González-Arellanes R, Urquidez-Romero R, Rodríguez-Tadeo A, Esparza-Romero J, Méndez-Estrada R-O, Ramírez-López E, et al. High hydration factor in older Hispanic-American adults: possible implications for accurate body composition estimates. Nutrients. 2019;11:2897.

    PubMed Central  Article  Google Scholar 

  50. Martin AD, Drinkwater DT. Variability in the measures of body fat. Sports Med. 1991;11:277–88.

    CAS  PubMed  Article  Google Scholar 

  51. Hull H, He Q, Thornton J, Javed F, Allen L, Wang J, et al. iDXA, Prodigy, and DPXL dual-energy X-ray absorptiometry whole-body scans: a cross-calibration study. J Clin Densitom. 2009;12:95–102.

    PubMed  Article  Google Scholar 

  52. Jennings G, Bluck L, Wright A, Elia M. The use of infrared spectrophotometry for measuring body water spaces. Clin Chem. 1999;45:1077–81.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank all participants, their families, and clubs for older people, for their collaboration in recruiting the sample. We also thank Mexico’s National Science and Technology Council (CONACyT; CB-2013-01/000000000221664) for funding this project. Thanks to the authorities of the Research Center for Alimentation and Development, the UACJ, and the UANL where the project was carried out. We sincerely appreciate the collaboration of the following students: Karla Pimienta Ibarra, Karen Ochoa Esquer, Fernanda Navarro Moreno, Ricardo de Jesús Vega Sosa, Diego Javier Brambila López, Ariadna Tapia, Leticia Aizpuro Pérez, Itzel Nallely López Villa, Margarita Vázquez López, Jesús Donaldo Maytorena Salazar, José Manuel Munguía Figueroa, Angélica Castellanos Espinosa, Erik Morales Borbonio, Andrea Cereceres Aragón, Dulce María Velo Rey, Jessica Isela López Flores, María Fernanda Orta, Israel Cañas García, Angélica Bugarín Noriega, and Airam Reyes Castro. Finally, thanks to Rosa María Cabrera, José Antonio Ponce, and Orlando Tortoledo for their technical support.

Funding

The study was supported by CONACyT grant CB-2013-01/000000000221664.

Author information

Authors and Affiliations

Authors

Contributions

GAR was responsible for designing the study protocol, conducting the field and laboratory studies, cleaning, and data analysis, as well as for the writing and editing process of the manuscript; URR, RTA, ERJ, MERO, RE contributed to the study design and critically reviewed the manuscript. ERJ was also the main adviser on the statistical analyses applied; RSAE was the adviser on deuterium determination by FTIR and critically reviewed the manuscript; PMBI contributed to the laboratory studies and critically reviewed the manuscript; AMH was the project leader and participated in study design, DXA measurements, analysis and interpretation of the data collected, and the writing and editing process of the manuscript.

Corresponding author

Correspondence to Heliodoro Alemán-Mateo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was conducted according to the guidelines laid down in the Helsinki Declaration, and all procedures involving human subjects were approved by the Ethics Committee of the CIAD, A.C. (CE/008/2014), UACJ (CBE.ICB/023.10-14), and UANL (15-FaSPyN-SA-19). Informed written consent was obtained from all subjects.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Arellanes, R., Urquidez-Romero, R., Rodríguez-Tadeo, A. et al. Predictive equations for fat mass in older Hispanic adults with excess adiposity using the 4‐compartment model as a reference method. Eur J Clin Nutr (2022). https://doi.org/10.1038/s41430-022-01171-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41430-022-01171-w

Search

Quick links