Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prevention of Non Communicable Diseases

Prevalence of hyperhomocysteinemia (HHcy) and its major determinants among hypertensive patients over 35 years of age

Abstract

Objective

Hyperhomocysteinemia (HHcy) and hypertension are associated with cardiovascular events. However, effects of Hcy-lowing interventions on cardiovascular outcome were conflicting. Serum folate level was proposed to be a possible determinant of efficacy of extra folate supplementation on cardiovascular outcome. The aims of the present study were to describe representative information on the levels of serum homocysteine and folate in hypertensive patients, and to explore the major determinants of HHcy.

Methods

11,007 participants with hypertension were analyzed in this cross-sectional study. Blood pressure and serum levels of biochemical indicators were measured. Multivariate logistic regression model was used to assess the associated factors of HHcy.

Results

Geometric mean of serum total homocysteine was 14.1 (95% CI: 13.9, 14.4) μmol/L and prevalence of HHcy was 36.1 (95% CI: 34.0, 38.1) % in hypertensive patients. HHcy was strongly associated with factors including male sex, older age, elevated serum creatinine (SCr), lower serum folate and vitamin B12, and uncontrolled blood pressure in hypertensive patients. Elevated SCr attributed to HHcy with the etiologic fraction of 0.29. The change of the odds ratio of HHcy associated with folate was significantly higher in patients with elevated SCr compared with that of patients with normal SCr.

Conclusion

The results suggested the protection of female sex and higher levels of folate and vitamin B12 from HHcy and attribution of older age and elevated SCr to HHcy. Restoring renal function deserved attention for hypertensive patients to benefit from Hcy-lowing measures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Profile of participants.
Fig. 2: Comparison of GM of tHcy between SCr normal and elevated hypertensive patients across quintiles.

Similar content being viewed by others

Data availability

Data will be available from the corresponding author upon request.

References

  1. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325:1202.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA. 2002;288:2015–22.

    Article  Google Scholar 

  3. De Ruijter W, Westendorp RG, Assendelft WJ, den Elzen WP, de Crean AJ, le Cessies S, et al. Use of Framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. BMJ. 2009;338:a3083.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brustolin S, Giugliani R, Felix TM. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res. 2010;43:1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD. Homocysteine and stroke: evidence on a causal link from mendelian randomisation. Lancet. 2005;365:224–32.

    Article  CAS  PubMed  Google Scholar 

  6. Martí-Carvajal AJ, Solà I, Lathyris D, Dayer M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2017;8:CD006612.

    PubMed  Google Scholar 

  7. Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH) Collaborative Group, Armitage JM, Bowman L, Clarke RJ, Wallendszus K, Bulbulia R, et al. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: a randomized trial. JAMA. 2010;303:2486–94.

    Article  Google Scholar 

  8. Bønaa KH, Njølstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354:1578–88.

    Article  PubMed  Google Scholar 

  9. Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA. 2002;288:973–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hodis HN, Mack WJ, Dustin L, Mahrer PR, Azen SP, Detrano R, et al. High-dose B vitamin supplementation and progression of subclinical atherosclerosis: a randomized controlled trial. Stroke. 2009;40:730–6.

    Article  CAS  PubMed  Google Scholar 

  11. Huo Y, Li J, Qin X, CSPPT Investigators. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA. 2015;313:1325–35.

    Article  CAS  PubMed  Google Scholar 

  12. Selhub J, Jacques PF, Rosenberg IH, Rogers G, Bowman BA, Gunter EW, et al. Serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey (1991-1994): population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med. 1999;131:331–9.

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and control of diabetes in Chinese adults. JAMA. 2013;310:948–59.

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017;317(Jun):2515–23.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Welch GN, Loscalzo J. Mechanisms of disease: homocysteine and atherothrombosis. N Engl J Med. 1998;338:1042–50.

    Article  CAS  PubMed  Google Scholar 

  16. Stabler SP, Marcell PD, Podell ER, Allen RH, Savage DG, Lindenbaum J. Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Investig. 1988;81:466–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu X, Qin X, Li Y, Sun D, Wang J, Liang M, et al. Efficacy of folic acid therapy on the progression of chronic kidney disease: the renal substudy of the china stroke primary prevention trial. JAMA Intern Med. 2016;176:1443–50.

    Article  PubMed  Google Scholar 

  18. Lee YM, Lee MK, Bae SG, Lee SH, Kim SY, Lee DH. Association of homocysteine levels with blood lead levels and micronutrients in the US general population. J Prev Med Public Health. 2012;45:387–93.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balint B, Jepchumba VK, Guéant JL, Guéant-Rodriguez RM. Mechanisms of homocysteine-induced damage to the endothelial, medial and adventitial layers of the arterial wall. Biochimie. 2020;173:100–6.

    Article  CAS  PubMed  Google Scholar 

  20. Liu LH, Guo Z, Feng M, Wu ZZ, He ZM, Xiong Y. Protection of DDAH2 overexpression against homocysteine-induced impairments of DDAH/ADMA/NOS/NO pathway in endothelial cells. Cell Physiol Biochem. 2012;30:1413–22.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng Z, Jiang X, Pansuria M, Fang P, Mai J, Mallilankaraman K, et al. Hyperhomocysteinemia and hyperglycemia induce and potentiate endothelial dysfunction via mu-calpain activation. Diabetes 2015;64:947–59.

    Article  CAS  PubMed  Google Scholar 

  22. Wu X, Zhang L, Miao Y, Yang J, Wang X, Wang CC, et al. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol. 2019;20:46–59.

    Article  CAS  PubMed  Google Scholar 

  23. Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA 2003;290:2945–51.

    Article  CAS  PubMed  Google Scholar 

  24. Holven KB, Aukrust P, Retterstol K, Hagve TA, Mørkrid L, Ose L, et al. Increased levels of C-reactive proteins and interleukin-6 in hyperhomocysteinemic subjects. Scand J Clin Lab Invest. 2006;66:45–54.

    Article  CAS  PubMed  Google Scholar 

  25. Li T, Chen Y, Li J, Yang X, Zhang H, Qin X, et al. Serum homocysteine concentration is significantly associated with inflammatory/immune factors. PLoS One. 2015;10:e0138099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sesso HD, Jiménez MC, Wang L, Ridker PM, Buring JE, Gaziano JM. Plasma inflammatory markers and the risk of developing hypertension in men. J Am Heart Assoc. 2015;4:e001802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. van Dijk SC, Enneman AW, Swart KM, van Wijngaarden JP, Ham AC, de Jonge R, et al. Effect of vitamin B12 and folic acid supplementation on biomarkers of endothelial function and inflammation among elderly individuals with hyperhomocysteinemia. Vasc Med. 2016;21:91–8.

    Article  PubMed  Google Scholar 

  28. Ruan L, Chen W, Srinivasan SR, Xu J, Toprak A, Berenson GS. Plasma homocysteine is adversely associated with glomerular filtration rate in asymptomatic black and white young adults: the Bogalusa heart study. Eur J Epidemiol. 2009;24:315–9.

    Article  CAS  PubMed  Google Scholar 

  29. Cohen E, Margalit I, Shochat T, Goldberg E, Krause I. Gender differences in homocysteine concentrations, a population-based cross-sectional study. Nutr Metab Cardiovasc Dis. 2019;29:9–14.

    Article  CAS  PubMed  Google Scholar 

  30. Lwin H, Yoshiike N, Yokoyama T, Saito K, Date C, Tanaka H. The relationships between plasma total homocysteine and selected atherosclerotic risk factors according to the C677T methylenetetrahydrofolate reductase gene in Japanese. Eur J Cardiovasc Prev Rehabil. 2005;12:182–4.

    Article  PubMed  Google Scholar 

  31. Wang Y, Li X, Qin X, Cai Y, He M, Sun L, et al. Prevalence of hyperhomocysteinaemia and its major determinants in rural Chinese hypertensive patients aged 45-75 years. Br J Nutr. 2013;109:1284–93.

    Article  CAS  PubMed  Google Scholar 

  32. Han L, Liu Y, Wang C, Tang L, Feng X, Astell-Burt T, et al. Determinants of hyperhomocysteinemia in healthy and hypertensive subjects: a population-based study and systematic review. Clin Nutr. 2017;36:1215–30.

    Article  CAS  PubMed  Google Scholar 

  33. Ustundag S, Arikan E, Sen S, Esgin H, Ciftci S. The relationship between the levels of plasma total homocysteine and insulin resistance in uncomplicated mild-to-moderate primary hypertension. J Hum Hypertens. 2006;20:379–81.

    Article  CAS  PubMed  Google Scholar 

  34. Han L, Wu Q, Wang C, Hao Y, Zhao J, Zhang L, et al. Homocysteine, ischemic stroke, and coronary heart disease in hypertensive patients: a population-based, prospective cohort study. Stroke 2015;46:1777–86.

    Article  CAS  PubMed  Google Scholar 

  35. Long Y, Nie J. Homocysteine in renal injury. Kidney Dis. 2016;2:80–87.

    Article  Google Scholar 

  36. Schalinske KL, Smazal AL. Homocysteine imbalance: a pathological metabolic marker. Adv Nutr. 2012;3:755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Capelli I, Cianciolo G, Gasperoni L, Zappulo F, Tondolo F, Cappuccilli M, et al. Folic acid and vitamin B12 administration in CKD, why not? Nutrients. 2019;11:383.

    Article  CAS  PubMed Central  Google Scholar 

  38. Shastry S, Ingram AJ, Scholey JW, James LR. Homocysteine induces mesangial cell apoptosis via activation of p38-mitogen-activated protein kinase. Kidney Int. 2007;71:304–11.

    Article  CAS  PubMed  Google Scholar 

  39. Yi F, Zhang AY, Li N, Muh RW, Fillet M, Renert AF, et al. Inhibition of ceramide-redox signaling pathway blocks glomerular injury in hyperhomocysteinemic rats. Kidney Int. 2006;70:88–96.

    Article  CAS  PubMed  Google Scholar 

  40. Yi F, Li PL. Mechanisms of homocysteine-induced glomerular injury and sclerosis. Am J Nephrol. 2008;28:254–64.

    Article  CAS  PubMed  Google Scholar 

  41. Friedman AN, Bostom AG, Selhub J, Levey AS, Rosenberg IH. The kidney and homocysteine metabolism. J Am Soc Nephrol. 2001;12:2181–9.

    Article  CAS  PubMed  Google Scholar 

  42. Pushpakumar S, Kundu S, Narayanan N, Sen U. DNA hypermethylation in hyperhomocysteinemia contributes to abnormal extracellular matrix metabolism in the kidney. FASEB J. 2015;29:4713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fischer PA, Dominguez GN, Cuniberti LA, Martinez V, Werba JP, Ramirez AJ, et al. Hyperhomocysteinemia induces renal hemodynamic dysfunction: is nitric oxide involved? J Am Soc Nephrol. 2003;14:653–60.

    Article  PubMed  CAS  Google Scholar 

  44. Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Tanaka K, Okubo K, et al. Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. Am J Kidney Dis. 2004;44:437–45.

    Article  PubMed  Google Scholar 

  45. Levi A, Cohen E, Levi M, Goldberg E, Garty M, Krause I. Elevated serum homocysteine is a predictor of accelerated decline in renal function and chronic kidney disease: a historical prospective study. Eur J Intern Med. 2014;25:951–5.

    Article  CAS  PubMed  Google Scholar 

  46. Jamison RL, Hartigan P, Kaufman JS, Goldfarb DS, Warren SR, Guarino PD, et al. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial. JAMA. 2007;298:1163–70.

    Article  CAS  PubMed  Google Scholar 

  47. Mann JF, Sheridan P, McQueen MJ, Held C, Arnold JM, Fodor G, et al. Homocysteine lowering with folic acid and B vitamins in people with chronic kidney disease-results of the renal Hope-2 study. Nephrol Dial Transpl. 2008;23:645–53.

    Article  CAS  Google Scholar 

  48. Heinz J, Kropf S, Domröse U, Westphal S, Borucki K, Luley C, et al. B vitamins and the risk of total mortality and cardiovascular disease in end-stage renal disease: results of a randomized controlled trial. Circulation. 2010;121:1432–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Municipal Commission of Health and Family Planning grant 20134129, Shanghai Municipal Health Commission (GWV-7, GWV-10.1-XK05, and GWV-10.1-XK16), and the funding of Innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (ZDSYS14005). Shanghai Municipal Center for Disease Control and Prevention also facilitated this research. We greatly appreciate the support of the District Health and Family Planning Commission and the district centers of Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Contributions

MC designed the study. MC and HX wrote the manuscript. XL and QY did the data analysis and interpretation. DZ and YW provided suggestions to the study. YS and CF supervised the study and revised the manuscript.

Corresponding authors

Correspondence to Minna Cheng, Yan Shi or Chen Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Xue, H., Li, X. et al. Prevalence of hyperhomocysteinemia (HHcy) and its major determinants among hypertensive patients over 35 years of age. Eur J Clin Nutr 76, 616–623 (2022). https://doi.org/10.1038/s41430-021-00983-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-00983-6

Search

Quick links