Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epidemiology

Maternal selenium deficiency during gestation is positively associated with the risks for LBW and SGA newborns in a Chinese population

Abstract

Background

Maternal selenium (Se) deficiency is associated with some adverse pregnant outcomes. However, it remains controversial whether maternal Se deficiency during gestation enhances the risks for low-birth-weight (LBW) and small-for-gestational-age (SGA) newborns.

Methods

For our cohort study, total 3133 mother-and-infant pairs were selected. Maternal serum Se concentration was detected by graphite furnace atomic absorption spectrometry. According to international references for maternal serum Se concentration, subjects were divided into Se deficiency (<45.0 μg/L), Se insufficiency (45.0-94.9 μg/L) and Se sufficiency (≥95.0 μg/L).

Results

There was a positive relation of maternal serum Se concentration in gestation and neonatal birth weight. Further analysis showed that the risks for LBW and SGA in SD group were significantly higher than that in SI and SS group, the adjusted ORs for LBW and SGA newborns were 1.87 (95%CI: 1.02, 3.45; P = 0.04) and 1.47 (95%CI: 1.07, 2.02; P = 0.02) in SI group, and 3.92 (95%CI: 2.03, 7.57; P < 0.001) and 2.77 (95%CI: 1.92, 4.02; P < 0.001) in SD group compared to SS group. In different gender subgroup, positive relations were observed between maternal Se deficiency and the risk for LBW girls, as well as the risks for both SGA girls and boys.

Conclusion

Maternal Se deficiency in gestation was positively associated with the risk for LBW girls, as well as the risks for both SGA girls and boys.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, et al. Selenium in human health and disease. Antioxid Redox Signal. 2011;14:1337–83.

    CAS  PubMed  Google Scholar 

  2. 2.

    Rayman MP. The importance of selenium to human health. Lancet. 2000;356:233–41.

    CAS  PubMed  Google Scholar 

  3. 3.

    Branco V, Godinho-Santos A, Gonçalves J, Lu J, Holmgren A, Carvalho C. Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radic Biol Med. 2014;73:95–105.

    CAS  PubMed  Google Scholar 

  4. 4.

    Schomburg L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol. 2011;8:160–71.

    PubMed  Google Scholar 

  5. 5.

    Ambroziak U, Hybsier S, Shahnazaryan U, Krasnodębska-Kiljańska M, Rijntjes E, Bartoszewicz Z, et al. Severe selenium deficits in pregnant women irrespective of autoimmune thyroid disease in an area with marginal selenium intake. J Trace Elem Med Biol. 2017;44:186–91.

    CAS  PubMed  Google Scholar 

  6. 6.

    Yang L, Zhao GH, Yu FF, Zhang RQ, Guo X. Selenium and iodine levels in subjects with kashin-Beck disease: a meta-analysis. Biol Trace Elem Res. 2016;170:43–54.

    CAS  PubMed  Google Scholar 

  7. 7.

    Yang J, Wang T, Wu C, Liu C. Selenium level surveillance for the year 2007 of Keshan disease in Endemic Areas and analysis on surveillance results between 2003 and 2007. Biol Trace Elem Res. 2010;138:53–59.

    CAS  PubMed  Google Scholar 

  8. 8.

    Wu Q, Rayman MP, Lv H, Schomburg L, Cui B, Gao C, et al. Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocr Metab. 2015;100:4037–47.

    CAS  PubMed  Google Scholar 

  9. 9.

    Türk S, Mändar R, Mahlapuu R, Viitak A, Punab M, Kullisaar T. Male infertility: decreased levels of selenium, zinc and antioxidants. J Trace Elem Med Biol. 2014;28:179–85.

    PubMed  Google Scholar 

  10. 10.

    Han YM, Yoon H, Lim S, Sung MK, Shin CM, Park YS, et al. Risk factors for vitamin D, zinc, and selenium deficiencies in Korean patients with inflammatory bowel disease. Gut Liver. 2017;11:363–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Sandsveden M, Manjer J. Selenium and breast cancer risk: a prospective nested case-control study on serum selenium levels, smoking habits and overweight. Int J Cancer. 2017;141:1741–50.

    CAS  PubMed  Google Scholar 

  12. 12.

    Kristal AR, Darke AK, Morris JS, Tangen CM, Goodman PJ, Thompson IM, et al. Baseline selenium status and effects of selenium and vitamin e supplementation on prostate cancer risk. J Natl Cancer Inst. 2014;106:djt456.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Benstoem C, Goetzenich A, Kraemer S, Borosch S, Manzanares W, Hardy G, et al. Selenium and its supplementation in cardiovascular disease-what do we know? Nutrients. 2015;7:3094–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Mariath AB, Bergamaschi DP, Rondó PH, Tanaka AC, Hinnig Pde F, Abbade JF, et al. The possible role of selenium status in adverse pregnancy outcomes. Br J Nutr. 2011;105:1418–28.

    CAS  PubMed  Google Scholar 

  15. 15.

    Vanderlelie J, Perkins AV. Selenium and preeclampsia: a global perspective. Pregnancy Hypertens. 2011;1:213–24.

    CAS  PubMed  Google Scholar 

  16. 16.

    Kong FJ, Ma LL, Chen SP, Li G, Zhou JQ. Serum selenium level and gestational diabetes mellitus: a systematic review and meta-analysis. Nutr J. 2016;15:94.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Unterscheider J, O’Donoghue K, Daly S, Geary MP, Kennelly MM, McAuliffe FM, et al. Fetal growth restriction and the risk of perinatal mortality-case studies from the multicentre PORTO study. BMC Pregnancy Childbirth. 2014;14:63.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Simeoni U, Armengaud JB, Siddeek B, Tolsa JF. Perinatal origins of adult disease. Neonatology. 2018;113:393–9.

    PubMed  Google Scholar 

  19. 19.

    Everson TM, Kappil M, Hao K, Jackson BP, Punshon T, Karagas MR, et al. Maternal exposure to selenium and cadmium, fetal growth, and placental expression of steroidogenic and apoptotic genes. Environ Res. 2017;158:233–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mistry HD, Kurlak LO, Young SD, Briley AL, Pipkin FB, Baker PN, et al. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Matern Child Nutr. 2014;10:327–34.

    PubMed  Google Scholar 

  21. 21.

    Nazemi L, Shariat M, Chamari M, Chahardoli R, Asgarzadeh L, Seighali F. Comparison of maternal and umbilical cord blood selenium levels in low and normal birth weight neonates. J Family Reprod Health. 2015;9:125–8.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tao FB, Hao JH, Huang K, Su PY, Cheng DJ, Xing XY, et al. Cohort profile: the China-Anhui birth cohort study. Int J Epidemiol. 2013;42:709–21.

    PubMed  Google Scholar 

  23. 23.

    Khalili H, Soudbakhsh A, Hajiabdolbaghi M, Dashti-Khavidaki S, Poorzare A, Saeedi AA, et al. Nutritional status and serum zinc and selenium levels in Iranian HIV infected individuals. BMC Infect Dis. 2008;8:165.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hashemi SM, Mashhadi M, Moghaddam AA. The relationship between serum selenium and zinc with gastroesophageal cancers in the Southeast of Iran. Indian J Med Paediatr Oncol. 2017;38:169–72.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mikolajczyk RT, Zhang J, Betran AP, Souza JP, Mori R, Gülmezoglu AM, et al. A global reference for fetal-weight and birthweight percentiles. Lancet. 2011;377:1855–61.

    PubMed  Google Scholar 

  26. 26.

    Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Global Health. 2013;1:e26–e36.

    PubMed  Google Scholar 

  27. 27.

    Lewandowska M, Sajdak S. The role of early pregnancy maternal selenium levels on the risk for small-for-gestational age newborns. Nutrients. 2019;11:2298.

    CAS  PubMed Central  Google Scholar 

  28. 28.

    Khaled Fahim N. Sample size calculation guide—Part 2: How to calculate the sample size for an independent cohort study. Adv J Emerg Med. 2019;3:e12.

    PubMed  Google Scholar 

  29. 29.

    Luo BF, Rao HY, Gao YH. Risk factors for familial clustering of hepatitis C virus infection in a Chinese Han population: a cross-sectional study. BMC Public Health. 2018;18:708.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Aggarwal R, Gathwala G, Yadav S. Selenium supplementation for prevention of Late-Onset Sepsis in very low birth weight preterm neonates. J Trop Pediatr. 2016;62:185–93.

    PubMed  Google Scholar 

  31. 31.

    Bogden JD, Kemp FW, Chen X, Stagnarogreen A, Stein TP, Scholl TO. Low-normal serum selenium early in human pregnancy predicts lower birth weight. FASEB J. 2007;21:A717.

    Google Scholar 

  32. 32.

    Alehagen U, Johansson P, Aaseth J, Alexander J, Brismar K. Increase in insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 after supplementation with selenium and coenzyme Q10. A prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. PLoS ONE. 2017;12:e0178614.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Walenkamp MJ, Losekoot M, Wit JM. Molecular IGF-1 and IGF-1 receptor defects: from genetics to clinical management. Endocr Dev. 2013;24:128–37.

    CAS  PubMed  Google Scholar 

  34. 34.

    Gohlke BC, Stutte S, Bartmann P, Woelfle J. Does gender-specific BMI development modulate insulin sensitivity in extremely low birth weight infants? J Pediatr Endocrinol Metab. 2009;22:827–35.

    PubMed  Google Scholar 

  35. 35.

    Asemi Z, Jamilian M, Mesdaghinia E, Esmaillzadeh A. Effects of selenium supplementation on glucose homeostasis, inflammation, and oxidative stress in gestational diabetes: randomized, double-blind, placebo-controlled trial. Nutrition. 2015;31:1235–42.

    CAS  PubMed  Google Scholar 

  36. 36.

    Khera A, Vanderlelie JJ, Perkins AV. Selenium supplementation protects trophoblast cells from mitochondrial oxidative stress. Placenta. 2013;34:594–8.

    CAS  PubMed  Google Scholar 

  37. 37.

    Watson M, van Leer L, Vanderlelie JJ, Perkins AV. Selenium supplementation protects trophoblast cells from oxidative stress. Placenta. 2012;33:1012–9.

    CAS  PubMed  Google Scholar 

  38. 38.

    Datt C, Chhabra A. Blood selenium level and glutathione peroxidase activity as affected by high level of selenium supplementation in cattle and buffaloes: a comparative study. Indian J Anim Sci. 2004;74:872–7.

    CAS  Google Scholar 

  39. 39.

    Mechri A, Mekhinini A, Othman LB, Fendri C, Gaha L, Kerkeni A. Relationship between glutathione peroxidase activity, glutathione and selenium levels in schizophrenic patients. European Neuropsychopharmacol. 2006;16:S394–5.

    Google Scholar 

  40. 40.

    Ghneim HK, Alshebly MM. Biochemical markers of oxidative stress in Saudi women with recurrent miscarriage. J Korean Med Sci. 2016;31:98–105.

    CAS  PubMed  Google Scholar 

  41. 41.

    Motawei SM, Attalla SM, Gouda HE, Harouny MA, Elmansoury AM. The effects of N-acetyl cysteine on oxidative stress among patients with pre-eclampsia. Int J Gynecol Obstet. 2016;135:226–7.

    CAS  Google Scholar 

  42. 42.

    Yoshida A, Watanabe K, Iwasaki A, Kimura C, Matsushita H, Wakatsuki A. Placental oxidative stress and maternal endothelial function in pregnant women with normotensive fetal growth restriction. J Matern Fetal Neonatal Med. 2018;31:1051–7.

    CAS  PubMed  Google Scholar 

  43. 43.

    Biberoglu E, Biberoglu K, Kirbas A, Daglar K, Genc M, Avci A, et al. Circulating and myometrial markers of oxidative stress in pregnant women with fetal growth restriction. J Obstet Gynaecol Res. 2016;42:29–35.

    CAS  PubMed  Google Scholar 

  44. 44.

    Rueangdetnarong H, Sekararithi R, Jaiwongkam T, Kumfu S, Chattipakorn N, Tongsong T, et al. Comparisons of the oxidative stress biomarkers levels in gestational diabetes mellitus (GDM) and non-GDM among Thai population: cohort study. Endocr Connect. 2018;7:681–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ferguson KK, Chen YH, VanderWeele TJ, McElrath TF, Meeker JD, Mukherjee B. Mediation of the relationship between maternal phthalate exposure and preterm birth by oxidative stress with repeated measurements across pregnancy. Environ Health Perspect. 2017;125:488–94.

    CAS  PubMed  Google Scholar 

  46. 46.

    Wu F, Tian FJ, Lin Y, Xu WM. Oxidative stress: placenta function and dysfunction. Am J Reprod Immunol. 2016;76:258–71.

    PubMed  Google Scholar 

  47. 47.

    Hu C, Yang Y, Li J, Wang H, Cheng C, Yang L, et al. Maternal diet-induced obesity compromises oxidative stress status and angiogenesis in the porcine placenta by up-regulating Nox2 expression. Oxid Med Cell Longev. 2019;2019:2481592.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Gveric-Ahmetasevic S, Sunjic SB, Skala H, Andrisic L, Stroser M, Zarkovic K, et al. Oxidative stress in small-for-gestational age (SGA) term newborns and their mothers. Free Radic Res. 2009;43:376–84.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by NSFC (81473016 and 81630084), Key Projects of outstanding Youth Talent Support Program in Anhui Provincial University (gxyqZD2016056), and Young Scholars of Wan Jiang in Anhui Province, and National Key Technology R&D Program (2006BAI05A03).

Author information

Affiliations

Authors

Contributions

HW and F-BT designed the research; XZ, Y-JF, and JL performed as measurement, HW, XZ, J-HH, and PZ analyzed data; HW wrote the manuscript; D-XX revised the manuscript. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Fang-Biao Tao or Hua Wang.

Ethics declarations

Conflict of interest

All authors disclose no conflicts of interest. The funders had no role in the research design, implementation, analysis or interpretation of the data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Feng, YJ., Li, J. et al. Maternal selenium deficiency during gestation is positively associated with the risks for LBW and SGA newborns in a Chinese population. Eur J Clin Nutr 75, 768–774 (2021). https://doi.org/10.1038/s41430-020-00809-x

Download citation

Search

Quick links