Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effect of vitamin D on fibroblast growth factor 23: a systematic review and meta-analysis of randomized controlled trials

Abstract

The phosphaturic hormone fibroblast growth factor 23 (FGF23) is a risk marker of cardiovascular and all-cause mortality. We therefore aimed to synthesize the evidence for the effect of vitamin D administration on circulating FGF23 concentrations. We performed a systematic review and meta-analysis of randomized, placebo-controlled trials (RCTs) in several databases from inception to January 2020. A total of 73 records were identified for full-text review, and 21 articles with 23 studies were included in the final analysis. The selected studies included 1925 participants with 8–156 weeks of follow-up. The weighted mean difference in FGF23 in the vitamin D versus placebo group was +21 pg/ml (95% CI: 13–28 pg/ml; P < 0.001) with considerable heterogeneity among studies (I2 = 99%). The FGF23 increment was higher in patients with end-stage kidney/heart failure than in other individuals (+300 pg/ml [95% CI: 41–558 pg/ml] vs. +20 pg/ml [95% CI: 12–28 pg/ml], Pinteraction = 0.03), and if baseline 25-hydroxyvitamin D concentrations were <50 nmol/l instead of ≥50 nmol/l (+34 pg/ml [95% CI: 18–51 pg/ml] vs. +9 pg/ml [95% CI: 3–14 pg/ml]; Pinteraction = 0.002). Moreover, the FGF23 increment was influenced by vitamin D dose/type (vitamin D dose equivalent ≤ 2000 IU/day: +2 pg/ml [95% CI: 0–3 pg/ml]; vitamin D dose equivalent > 2000 IU/day: +18 pg/ml [95% CI: 6–30 pg/ml]; administration of activated vitamin D: +67 pg/ml [95% CI: 16–117 pg/ml]; Pinteraction = 0.001). Results were not significantly influenced by study duration (Pinteraction = 0.14), age class (Pinteraction = 0.09), or assay provider (Pinteraction = 0.11). In conclusion, this meta-analysis of RCTs demonstrates that vitamin D administration of >2000 IU/d vitamin D or activated vitamin D significantly increased concentrations of the cardiovascular risk marker FGF23, especially in patients with end-stage kidney/heart failure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Flowchart of identified and selected studies.
Fig. 2: Effect of vitamin D on circulating FGF23 concentrations.
Fig. 3: Subgroup analyses of vitamin D on mean differences in circulating FGF23 concentrations between intervention and control groups.

References

  1. 1.

    Grabner A, Mazzaferro S, Cianciolo G, Krick S, Capelli I, Rotondi S, et al. Fibroblast growth factor 23: mineral metabolism and beyond. Contrib Nephrol. 2017;190:83–95.

    CAS  Article  Google Scholar 

  2. 2.

    Scialla JJ, Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol. 2014;10:268–78.

    CAS  Article  Google Scholar 

  3. 3.

    Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Investig. 2011;121:4393–408.

    CAS  Article  Google Scholar 

  4. 4.

    Böckmann I, Lischka J, Richter B, Deppe J, Rahn A, Fischer DC, et al. FGF23-mediated activation of local RAAS promotes cardiac hypertrophy and fibrosis. Int J Mol Sci. 2019;20:4634.

    Article  Google Scholar 

  5. 5.

    Razzaque MS. Phosphate toxicity and vascular mineralization. Contrib Nephrol. 2013;180:74–85.

    CAS  Article  Google Scholar 

  6. 6.

    Brandenburg VM, Kleber ME, Vervloet MG, Tomaschitz A, Pilz S, Stojakovic T, et al. Fibroblast growth factor 23 (FGF23) and mortality: the Ludwigshafen Risk and Cardiovascular Health Study. Atherosclerosis. 2014;237:53–59.

    CAS  Article  Google Scholar 

  7. 7.

    Qin Z, Liu X, Song M, Zhou Q, Yu J, Zhou B, et al. Fibroblast growth factor 23 as a predictor of cardiovascular and all-cause mortality in prospective studies. Atherosclerosis. 2017;261:1–11.

    CAS  Article  Google Scholar 

  8. 8.

    Holick MF. Vitamin D deficiency. N. Engl J Med. 2007;357:266–81.

    CAS  Article  Google Scholar 

  9. 9.

    Zittermann A, Scheld K, Stehle P. Seasonal variations in vitamin D status and calcium absorption do not influence bone turnover in young women. Eur J Clin Nutr. 1998l;52:501–6.

    CAS  Article  Google Scholar 

  10. 10.

    Trautvetter U, Neef N, Leiterer M, Kiehntopf M, Kratzsch J, Jahreis G. Effect of calcium phosphate and vitamin D3 supplementation on bone remodelling and metabolism of calcium, phosphorus, magnesium and iron. Nutr J. 2014;13:6.

    Article  Google Scholar 

  11. 11.

    Slatopolsky E, Cozzolino M, Finch JL. Differential effects of 19-nor-1,25-(OH)(2)D(2) and 1alpha-hydroxyvitamin D(2) on calcium and phosphorus in normal and uremic rats. Kidney Int. 2002;62:1277–84.

    CAS  Article  Google Scholar 

  12. 12.

    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic rev and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.

    Article  Google Scholar 

  13. 13.

    Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.

    Article  Google Scholar 

  14. 14.

    Devaraj S, Duncan-Staley C, Jialal I. Evaluation of a method for fibroblast growth factor-23: a novel biomarker of adverse outcomes in patients with renal disease. Metab Syndr Relat Disord. 2010;8:477–82.

    CAS  Article  Google Scholar 

  15. 15.

    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  Google Scholar 

  16. 16.

    Macaskill P, Walter SD, Irwig L. A comparison of methods to detect publication bias in meta-analysis. Stat Med. 2001;20:641–54.

    CAS  Article  Google Scholar 

  17. 17.

    Cochrane Community (beta). Cochrane handbook for systematic reviews of interventions. www.cochrane.org/handbook. Accessed Mar 2015.

  18. 18.

    Seibert E, Heine GH, Ulrich C, Seiler S, Köhler H, Girndt M. Influence of cholecalciferol supplementation in hemodialysis patients on monocyte subsets: a randomized, double-blind, placebo-controlled clinical trial. Nephron Clin Pract. 2013;123:209–19.

    CAS  Article  Google Scholar 

  19. 19.

    Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine, editors. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington D.C.: National Academic Press; 1997.

  20. 20.

    Zittermann A, Ernst JB. Calciotropic and phosphaturic hormones in heart failure. Nutr Metab Cardiovasc Dis. 2016;26:971–9.

    CAS  Article  Google Scholar 

  21. 21.

    Zittermann A, Ernst JB, Birschmann I, Dittrich M. Effect of vitamin D or activated vitamin D on circulating 1,25-dihydroxyvitamin D concentrations: a systematic review and metaanalysis of randomized controlled trials. Clin Chem. 2015;61:1484–94.

    CAS  Article  Google Scholar 

  22. 22.

    Jenkins DJA, Spence JD, Giovannucci EL, Kim YI, Josse R, Vieth R, et al. Supplemental vitamins and minerals for CVD prevention and treatment. J Am Coll Cardiol. 2018;71:2570–84.

    CAS  Article  Google Scholar 

  23. 23.

    Barbarawi M, Kheiri B, Zayed Y, Barbarawi O, Dhillon H, Swaid B, et al. Vitamin D supplementation and cardiovascular disease risks in more than 83 000 Individuals in 21 randomized clinical trials: a meta-analysis. JAMA Cardiol. 2019. https://doi.org/10.1001/jamacardio.2019.1870.

  24. 24.

    Shroff R, Egerton M, Bridel M, Shah V, Donald AE, Cole TJ, et al. A bimodal association of vitamin D levels and vascular disease in children on dialysis. J Am Soc Nephrol. 2008;19:1239–46.

    CAS  Article  Google Scholar 

  25. 25.

    Gluba-Brzózka A, Franczyk B, Ciałkowska-Rysz A, Olszewski R, Rysz J. Impact of vitamin D on the cardiovascular system in advanced chronic kidney disease (CKD) and dialysis patients. Nutrients. 2018;10:E709.

    Article  Google Scholar 

  26. 26.

    J-DAVID Investigators, Shoji T, Inaba M, Fukagawa M, Ando R, Emoto M, et al. Effect of oral alfacalcidol on clinical outcomes in patients without secondary hyperparathyroidism receiving maintenance hemodialysis: the J-DAVID Randomized Clinical Trial. JAMA. 2018;320:2325–34.

    Article  Google Scholar 

  27. 27.

    Nitta K, Ogawa T, Hanafusa N, Tsuchiya K. Recent advances in the management of vascular calcification in patients with end-stage renal disease. Contrib Nephrol. 2019;198:62–72.

    CAS  Article  Google Scholar 

  28. 28.

    Zittermann A, Pilz S. Vitamin D and cardiovascular disease: an update. Anticancer Res. 2019;39:4627–35.

    CAS  Article  Google Scholar 

  29. 29.

    Chen YX, Huang C, Duan ZB, Xu CY, Chen Y. Klotho/FGF23 axis mediates high phosphate-induced vascular calcification in vascular smooth muscle cells via Wnt7b/β-catenin pathway. Kaohsiung J Med Sci. 2019;35:393–400.

    CAS  PubMed  Google Scholar 

  30. 30.

    Clinkenbeard EL, Noonan ML, Thomas JC, Ni P, Hum JM, Aref M, et al. Increased FGF23 protects against detrimental cardio-renal consequences during elevated blood phosphate in CKD. JCI Insight 2019;4:123817.

    Article  Google Scholar 

  31. 31.

    Zittermann A, Schleithoff SS, Tenderich G, Berthold HK, Körfer R, Stehle P. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003;41:105–12.

    CAS  Article  Google Scholar 

  32. 32.

    Rhee H, Yang JY, Jung WJ, Shin MJ, Yang BY, Song SH, et al. Significance of residual renal function for phosphate control in chronic hemodialysis patients. Kidney Res Clin Pract. 2014;33:58e64.

    Article  Google Scholar 

  33. 33.

    Zittermann A, Morshuis M, Kuhn J, Pilz S, Ernst JB, Oezpeker C, et al. Vitamin D metabolites and fibroblast growth factor-23 in patients with left ventricular assist device implants: association with stroke and mortality risk. Eur J Nutr. 2016;55:305–13.

    CAS  Article  Google Scholar 

  34. 34.

    Gao S, Xu J, Zhang S, Jin J. Meta-analysis of the association between fibroblast growth factor 23 and mortality and cardiovascular events in hemodialysis patients. Blood Purif. 2019;47:24–30.

    CAS  Article  Google Scholar 

  35. 35.

    Ramirez-Sandoval JC, Arvizu-Hernandez M, Cruz C, Vazquez-Cantu B, Rojas-Concha LJ, Tamez L, et al. Cholecalciferol supplementation increases FGF23 in peritoneal dialysis patients with hypovitaminosis D: a randomized clinical trial. J Nephrol. 2019;32:645–59.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

AZ designed the work that led to the submission, AZ and HKB acquired data, and SP played an important role in interpreting the results. AZ drafted the manuscript and HKB and SP revised the manuscript. AZ, HKB, and SP approved the final version and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Armin Zittermann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zittermann, A., Berthold, H.K. & Pilz, S. The effect of vitamin D on fibroblast growth factor 23: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 75, 980–987 (2021). https://doi.org/10.1038/s41430-020-00725-0

Download citation

Search

Quick links