Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fitness versus adiposity in cardiovascular disease risk

Abstract

Obesity and low cardiorespiratory fitness are both established predictors of cardiovascular disease morbidity and mortality. Whether the protective effects of fitness outweigh the deleterious effects of obesity, however, remains a topic of debate. To extend knowledge of the relative influence of fitness and fatness on cardiovascular disease outcomes, however, attention must be paid to measurement quality. Eliminating inherent bias of self-report and including the highest quality assessments of cardiorespiratory fitness and fatness simultaneously are imperative for head-to-head comparisons. Studies must move beyond body mass index and total body fat percentage to differentiate the heterogenous effects of various adipose tissue depots on cardiovascular risk. Imaging techniques that measure visceral adiposity and other risk-laden ectopic adipose depots while also quantifying cardioprotective adipose depots such as lower body subcutaneous fat and even non-adipose tissues such as skeletal muscle may further illuminate the influence of body composition on cardiovascular health. This review underscores key studies within a large body of literature that provide the foundation for the fit-vs.-fat debate in the context of cardiovascular disease risk, and identifies important considerations for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bray GA, Kim KK, Wilding JPH, World Obesity F. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017;18:715–23. https://doi.org/10.1111/obr.12551.

    Article  CAS  PubMed  Google Scholar 

  2. Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol. 2010;24(4 Suppl):27–35. https://doi.org/10.1177/1359786810382057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flegal KM, Graubard BI, Williamson DF, Gail MH. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA. 2007;298:2028–37.

    Article  CAS  Google Scholar 

  4. Katzmarzyk PT, Reeder BA, Elliott S, Joffres MR, Pahwa P, Raine KD, et al. Body mass index and risk of cardiovascular disease, cancer and all-cause mortality. Can J Public Health. 2012;103:147–51.

    PubMed  Google Scholar 

  5. Dudina A, Cooney MT, Bacquer DD, Backer GD, Ducimetiere P, Jousilahti P, et al. Relationships between body mass index, cardiovascular mortality, and risk factors: a report from the SCORE investigators. Eur J Cardiovasc Prev Rehabil. 2011;18:731–42. https://doi.org/10.1177/1741826711412039.

    Article  PubMed  Google Scholar 

  6. Global BMIMC, Di Angelantonio E, Bhupathiraju ShN, Wormser D, Gao P, Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–86. https://doi.org/10.1016/S0140-6736(16)30175-1.

    Article  Google Scholar 

  7. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024–35. https://doi.org/10.1001/jama.2009.681.

    Article  CAS  PubMed  Google Scholar 

  8. Holtermann A, Marott JL, Gyntelberg F, Sogaard K, Mortensen OS, Prescott E, et al. Self-reported cardiorespiratory fitness: prediction and classification of risk of cardiovascular disease mortality and longevity--a prospective investigation in the Copenhagen City Heart Study. J Am Heart Assoc. 2015;4:e001495 https://doi.org/10.1161/JAHA.114.001495.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stamatakis E, Hamer M, O’Donovan G, Batty GD, Kivimaki M. A non-exercise testing method for estimating cardiorespiratory fitness: associations with all-cause and cardiovascular mortality in a pooled analysis of eight population-based cohorts. Eur Heart J. 2013;34:750–8. https://doi.org/10.1093/eurheartj/ehs097.

    Article  PubMed  Google Scholar 

  10. Barlow CE, Defina LF, Radford NB, Berry JD, Cooper KH, Haskell WL, et al. Cardiorespiratory fitness and long-term survival in “low-risk” adults. J Am Heart Assoc. 2012;1:e001354 https://doi.org/10.1161/JAHA.112.001354.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim Y, White T, Wijndaele K, Westgate K, Sharp SJ, Helge JW, et al. The combination of cardiorespiratory fitness and muscle strength, and mortality risk. Eur J Epidemiol. 2018. https://doi.org/10.1007/s10654-018-0384-x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, Paffenbarger RS Jr., et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. Jama. 1999;282:1547–53.

    Article  CAS  Google Scholar 

  13. Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE. Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med. 2004;351:2694–703. https://doi.org/10.1056/NEJMoa042135

    Article  CAS  PubMed  Google Scholar 

  14. Mora S, Lee IM, Buring JE, Ridker PM. Association of physical activity and body mass index with novel and traditional cardiovascular biomarkers in women. JAMA. 2006;295:1412–9. https://doi.org/10.1001/jama.295.12.1412.

    Article  CAS  PubMed  Google Scholar 

  15. Warner ET, Wolin KY, Duncan DT, Heil DP, Askew S, Bennett GG. Differential accuracy of physical activity self-report by body mass index. Am J Health Behav. 2012;36:168–78. https://doi.org/10.5993/AJHB.36.2.3.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hill A, Roberts J. Body mass index: a comparison between self-reported and measured height and weight. J Public Health Med. 1998;20:206–10.

    Article  CAS  Google Scholar 

  17. Krul AJ, Daanen HA, Choi H. Self-reported and measured weight, height and body mass index (BMI) in Italy, the Netherlands and North America. Eur J Public Health. 2011;21:414–9. https://doi.org/10.1093/eurpub/ckp228.

    Article  PubMed  Google Scholar 

  18. Mueller KG, Hurt RT, Abu-Lebdeh HS, Mueller PS. Self-perceived vs actual and desired weight and body mass index in adult ambulatory general internal medicine patients: a cross sectional study. BMC Obes. 2014;1:26 https://doi.org/10.1186/s40608-014-0026-0.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pollock ML, Bohannon RL, Cooper KH, Ayres JJ, Ward A, White SR, et al. A comparative analysis of four protocols for maximal treadmill stress testing. Am Heart J. 1976;92:39–46.

    Article  CAS  Google Scholar 

  20. Williams PT. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc. 2001;33:754–61.

    Article  CAS  Google Scholar 

  21. Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, et al. Long-term effeccry fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation. 2011;124:2483–90. https://doi.org/10.1161/CIRCULATIONAHA.111.038422.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ortega FB, Sui X, Lavie CJ, Blair SN. Body mass index, the most widely used but also widely criticized index: would a criterion standard measure of total body fat be a better predictor of cardiovascular disease mortality? Mayo Clin Proc. 2016;91:443–55. https://doi.org/10.1016/j.mayocp.2016.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956;4:20–34. https://doi.org/10.1093/ajcn/4.1.20.

    Article  CAS  PubMed  Google Scholar 

  24. Neeland IJ, Poirier P, Despres JP. Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation. 2018;137:1391–406. https://doi.org/10.1161/CIRCULATIONAHA.117.029617.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28:1039–49. https://doi.org/10.1161/ATVBAHA.107.159228.

    Article  CAS  PubMed  Google Scholar 

  26. Britton KA, Massaro JM, Murabito JM, Kreger BE, Hoffmann U, Fox CS. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol. 2013;62:921–5. https://doi.org/10.1016/j.jacc.2013.06.027.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Neeland IJ, Turer AT, Ayers CR, Berry JD, Rohatgi A, Das SR, et al. Body fat distribution and incident cardiovascular disease in obese adults. J Am Coll Cardiol. 2015;65:2150–1. https://doi.org/10.1016/j.jacc.2015.01.061.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nazare JA, Smith J, Borel AL, Aschner P, Barter P, Van Gaal L, et al. Usefulness of measuring both body mass index and waist circumference for the estimation of visceral adiposity and related cardiometabolic risk profile (from the INSPIRE ME IAA study). Am J Cardiol. 2015;115:307–15. https://doi.org/10.1016/j.amjcard.2014.10.039.

    Article  PubMed  Google Scholar 

  29. Tanamas SK, Ng WL, Backholer K, Hodge A, Zimmet PZ, Peeters A. Quantifying the proportion of deaths due to body mass index- and waist circumference-defined obesity. Obes (Silver Spring). 2016;24:735–42. https://doi.org/10.1002/oby.21386.

    Article  Google Scholar 

  30. Radholm K, Chalmers J, Ohkuma T, Peters S, Poulter N, Hamet P, et al. Use of the waist-to-height ratio to predict cardiovascular risk in patients with diabetes: results from the ADVANCE-ON study. Diabetes Obes Metab. 2018. https://doi.org/10.1111/dom.13311.

    Article  Google Scholar 

  31. Ko BJ, Chang Y, Jung HS, Yun KE, Kim CW, Park HS, et al. Relationship between low relative muscle mass and coronary artery calcification in healthy adults. Arterioscler Thromb Vasc Biol. 2016;36:1016–21. https://doi.org/10.1161/ATVBAHA.116.307156.

    Article  CAS  PubMed  Google Scholar 

  32. Fukuda T, Bouchi R, Takeuchi T, Tsujimoto K, Minami I, Yoshimoto T, et al. Sarcopenic obesity assessed using dual energy X-ray absorptiometry (DXA) can predict cardiovascular disease in patients with type 2 diabetes: a retrospective observational study. Cardiovasc Diabetol. 2018;17:55 https://doi.org/10.1186/s12933-018-0700-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance E. Davidson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, L.E., Hunt, S.C. & Adams, T.D. Fitness versus adiposity in cardiovascular disease risk. Eur J Clin Nutr 73, 225–230 (2019). https://doi.org/10.1038/s41430-018-0333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0333-5

Search

Quick links