Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minerals, trace elements, Vit. D and bone health

Familial clustering of vitamin D deficiency via shared environment: The Korean National Health and Nutrition Examination Survey 2008–2012

Abstract

Background/objectives

Familial correlation of serum 25-hydroxyvitamin D concentration (25(OH)D) was reported in twin- or parent-offspring studies. However, data on relative contribution of environmental factors on familial clustering of 25(OH)D in extended families are limited.

Subjects/methods

We performed cross-sectional study using data from the Korean National Health and Nutrition Examination Survey (KNHANES) 2008–2012. Familial correlations of 25(OH)D were estimated in 28,551 subjects from 10,882 families. The variance component method was used to assess the relative contribution of additive genetic or environmental contributions to the variation in 25(OH)D level. Logistic regression models with interaction term were built to evaluate the differential influence of parental vitamin D status on the adolescents and adults offspring.

Results

Mean serum 25(OH)D concentration of subjects was 44.6 nmol/L (vitamin D insufficiency (30–50 nmol/L), 51%; vitamin D deficiency ( < 30 nmol/L), 17%). Familial clustering explained 40% of the total variation in 25(OH)D. In the variance component model, 4%, 39%, and 57% of the variation in serum 25(OH)D level was attributed to additive genetic, common shared environmental, and individual environmental factors, respectively. The odds of vitamin D deficiency in offspring with both parents with vitamin D deficiency compared with those with both parents with sufficient vitamin D levels was greater in adolescents ( < 19 years) than in adults ( ≥ 19 years) (odds ratio = 41.1 vs. 12.5; p for interaction = 0.03).

Conclusions

We found a familial clustering of vitamin D deficiency in a large family-based cohort. Parental influence on vitamin D status of offspring was greater in adolescents than in adults.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dawson-Hughes B, Bischoff-Ferrari HA. Therapy of osteoporosis with calcium and vitamin D. J Bone Miner Res. 2007;22(Suppl 2):V59–63. https://doi.org/10.1359/jbmr.07s209

    Article  CAS  PubMed  Google Scholar 

  2. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81. https://doi.org/10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  3. Muscogiuri G. New light on an old vitamin: The role of the sunshine vitamin D in chronic disease. Rev Endocr Metab Disord. 2017;18:145–7. https://doi.org/10.1007/s11154-017-9427-y

    Article  PubMed  Google Scholar 

  4. Savastano S, Barrea L, Savanelli MC, Nappi F, Di Somma C, Orio F, et al. Low vitamin D status and obesity: Role of nutritionist. Rev Endocr Metab Disord. 2017;18:215–25. https://doi.org/10.1007/s11154-017-9410-7

    Article  CAS  PubMed  Google Scholar 

  5. Muscogiuri G, Altieri B, de Angelis C, Palomba S, Pivonello R, Colao A, et al. Shedding new light on female fertility: The role of vitamin D. Rev Endocr Metab Disord. 2017;18:273–83. https://doi.org/10.1007/s11154-017-9407-2

    Article  CAS  PubMed  Google Scholar 

  6. Ullah MI, Koch CA, Tamanna S, Rouf S, Shamsuddin L. Vitamin D deficiency and the risk of preeclampsia and eclampsia in Bangladesh. Horm Metab Res. 2013;45:682–7. https://doi.org/10.1055/s-0033-1345199

    Article  CAS  PubMed  Google Scholar 

  7. Ullah MI, Uwaifo GI, Nicholas WC, Koch CA. Does vitamin d deficiency cause hypertension? Current evidence from clinical studies and potential mechanisms. Int J Endocrinol. 2010;2010:579640. https://doi.org/10.1155/2010/579640

    Article  CAS  PubMed  Google Scholar 

  8. Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18:153–65. https://doi.org/10.1007/s11154-017-9424-1

    Article  CAS  PubMed  Google Scholar 

  9. Karohl C, Su S, Kumari M, Tangpricha V, Veledar E, Vaccarino V, et al. Heritability and seasonal variability of vitamin D concentrations in male twins. Am J Clin Nutr. 2010;92:1393–8. https://doi.org/10.3945/ajcn.2010.30176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Snellman G, Melhus H, Gedeborg R, Olofsson S, Wolk A, Pedersen NL, et al. Seasonal genetic influence on serum 25-hydroxyvitamin D levels: a twin study. PLoS ONE. 2009;4:e7747. https://doi.org/10.1371/journal.pone.0007747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arguelles LM, Langman CB, Ariza AJ, Ali FN, Dilley K, Price H, et al. Heritability and environmental factors affecting vitamin D status in rural Chinese adolescent twins. J Clin Endocrinol Metab. 2009;94:3273–81. https://doi.org/10.1210/jc.2008-1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hunter D, De Lange M, Snieder H, MacGregor AJ, Swaminathan R, Thakker RV, et al. Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J Bone Miner Res. 2001;16:371–8. https://doi.org/10.1359/jbmr.2001.16.2.371

    Article  CAS  PubMed  Google Scholar 

  13. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376:180–8. https://doi.org/10.1016/s0140-6736(10)60588-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Madsen KH, Rasmussen LB, Mejborn H, Andersen EW, Molgaard C, Nissen J, et al. Vitamin D status and its determinants in children and adults among families in late summer in Denmark. Br J Nutr. 2014;112:776–84. https://doi.org/10.1017/S0007114514001263

    Article  CAS  PubMed  Google Scholar 

  15. Park SI, Rhee Y, Lim JS, Park S, Kang SW, Lee MS, et al. Right adrenal venography findings correlated with C-arm CT for selection during C-arm CT-assisted adrenal vein sampling in primary aldosteronism. Cardiovasc Interv Radiol. 2014;37:1469–75. https://doi.org/10.1007/s00270-013-0820-y

    Article  Google Scholar 

  16. Robinson SL, Ramirez-Zea M, Roman AV, Villamor E. Nine Mesoamerican Countries Metabolic Syndrome Study G. Correlates and family aggregation of vitamin D concentrations in school-aged children and their parents in nine Mesoamerican countries. Public Health Nutr. 2017;20:2754–65. https://doi.org/10.1017/S1368980017001616

    Article  PubMed  Google Scholar 

  17. Livshits G, Karasik D, Seibel MJ. Statistical genetic analysis of plasma levels of vitamin D: familial study. Ann Hum Genet. 1999;63:429–39.

    Article  CAS  PubMed  Google Scholar 

  18. Hansen JG, Tang W, Hootman KC, Brannon PM, Houston DK, Kritchevsky SB, et al. Genetic and environmental factors are associated with serum 25-hydroxyvitamin D concentrations in older African Americans. J Nutr. 2015;145:799–805. https://doi.org/10.3945/jn.114.202093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hiraki LT, Major JM, Chen C, Cornelis MC, Hunter DJ, Rimm EB, et al. Exploring the genetic architecture of circulating 25-hydroxyvitamin D. Genet Epidemiol. 2013;37:92–8. https://doi.org/10.1002/gepi.21694

    Article  PubMed  Google Scholar 

  20. Fohner AE, Wang Z, Yracheta J, O’Brien DM, Hopkins SE, Black J, et al. Genetics, Diet, and Season Are Associated with Serum 25-Hydroxycholecalciferol Concentration in a Yup’ik Study Population from Southwestern Alaska. J Nutr. 2016;146:318–25. https://doi.org/10.3945/jn.115.223388

    Article  CAS  PubMed  Google Scholar 

  21. Del Valle HB, Yaktine AL, Taylor CL, Ross AC. Dietary reference intakes for calcium and vitamin D. Washington DC: National Academies Press, Institute of Medicine; 2011.

  22. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30. https://doi.org/10.1210/jc.2011-0385

    Article  CAS  PubMed  Google Scholar 

  23. Pludowski P, Holick MF, Pilz S, Wagner CL, Hollis BW, Grant WB, et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun Rev. 2013;12:976–89. https://doi.org/10.1016/j.autrev.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  24. Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A, et al. Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol. 2018;175:125–35. https://doi.org/10.1016/j.jsbmb.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  25. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62:1198–211. https://doi.org/10.1086/301844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akaike H. Factor analysis and AIC. Psychometrika. 1987;52:317–32.

    Article  Google Scholar 

  27. Choi HS, Park JH, Kim SH, Shin S, Park MJ. Strong familial association of bone mineral density between parents and offspring: KNHANES 2008-2011. Osteoporos Int. 2017;28:955–64. https://doi.org/10.1007/s00198-016-3806-1

    Article  CAS  PubMed  Google Scholar 

  28. Choi HS, Oh HJ, Choi H, Choi WH, Kim JG, Kim KM, et al. Vitamin D insufficiency in Korea--a greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J Clin Endocrinol Metab. 2011;96:643–51. https://doi.org/10.1210/jc.2010-2133

    Article  CAS  PubMed  Google Scholar 

  29. Ganji V, Zhang X, Tangpricha V. Serum 25-hydroxyvitamin D concentrations and prevalence estimates of hypovitaminosis D in the U.S. population based on assay-adjusted data. J Nutr. 2012;142:498–507. https://doi.org/10.3945/jn.111.151977

    Article  CAS  PubMed  Google Scholar 

  30. Langlois K, Greene-Finestone L, Little J, Hidiroglou N, Whiting S. Vitamin D status of Canadians as measured in the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2010;21:47–55.

    PubMed  Google Scholar 

  31. Perusse L, Leblanc C, Bouchard C. Familial resemblance in lifestyle components: results from the Canada Fitness Survey. Can J Public Health. 1988;79:201–5.

    CAS  PubMed  Google Scholar 

  32. Bogl LH, Silventoinen K, Hebestreit A, Intemann T, Williams G, Michels N et al. Familial resemblance in dietary intakes of children, adolescents, and parents: does dietary quality play a role? Nutrients. 2017;9. https://doi.org/10.3390/nu9080892.

  33. Shea MK, Benjamin EJ, Dupuis J, Massaro JM, Jacques PF, D’Agostino RB Sr., et al. Genetic and non-genetic correlates of vitamins K and D. Eur J Clin Nutr. 2009;63:458–64. https://doi.org/10.1038/sj.ejcn.1602959

    Article  CAS  PubMed  Google Scholar 

  34. Orton SM, Morris AP, Herrera BM, Ramagopalan SV, Lincoln MR, Chao MJ, et al. Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am J Clin Nutr. 2008;88:441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griffiths AJF MJ, Suzuki DT. An Introduction to Genetic Analysis. 7th ed. New York: W. H. Freeman; 2000.

  36. Yao S, Hong CC, Bandera EV, Zhu Q, Liu S, Cheng TD, et al. Demographic, lifestyle, and genetic determinants of circulating concentrations of 25-hydroxyvitamin D and vitamin D-binding protein in African American and European American women. Am J Clin Nutr. 2017;105:1362–71. https://doi.org/10.3945/ajcn.116.143248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19:2739–45. https://doi.org/10.1093/hmg/ddq155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sacheck JM, Van Rompay MI, Chomitz VR, Economos CD, Eliasziw M, Goodman E, et al. Impact of three doses of vitamin D3 on serum 25(OH)D deficiency and insufficiency in at-risk schoolchildren. J Clin Endocrinol Metab. 2017. https://doi.org/10.1210/jc.2017-01179

    Article  PubMed  PubMed Central  Google Scholar 

  39. van den Ouweland JM, Vogeser M, Bacher S. Vitamin D and metabolites measurement by tandem mass spectrometry. Rev Endocr Metab Disord. 2013;14:159–84. https://doi.org/10.1007/s11154-013-9241-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NH, YKL, and YR designed research. NH and YKL conducted research and analyzed data. NH, YKL, and YR wrote the paper. YR had primary responsibility for final content. All authors read and approved the final manuscript. This study was not funded by any industrial, commercial, or governmental sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumie Rhee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, N., Lee, Y.K. & Rhee, Y. Familial clustering of vitamin D deficiency via shared environment: The Korean National Health and Nutrition Examination Survey 2008–2012. Eur J Clin Nutr 72, 1700–1708 (2018). https://doi.org/10.1038/s41430-018-0157-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0157-3

This article is cited by

Search

Quick links