Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vitamin D supplementation and body fat mass: a systematic review and meta-analysis

Abstract

Studies have indicated that 25-hydroxyvitamin D (25(OH)D) level in obese is lower than normal weight subjects; however, results of studies that investigated relationship between 25(OH)D and fat mass are inconsistent. In addition, several randomized clinical trials (RCTs) have studied the influence of cholecalciferol supplement on percentage fat mass (PFM) but their results are conflicting. The objectives were to investigate the association between vitamin D3 and PFM pooling together observational studies and RCTs. PubMed/MEDLINE, Cochrane, and Scopus were comprehensively searched from inception to September 2016. The Fisher’s Z (SE) of correlation coefficient and mean (SD) of changes in PFM from baseline were used to perform meta-analysis in observational studies and RCTs, respectively. To determine potential source of heterogeneity, subgroup and meta-regression analyses were conducted. Pooling correlation coefficients showed an inverse association between PFM (Fisher’s Z: − 0.24, 95% CI: − 0.30 to −0 .18) and FM (Fisher’s Z: − 0.32, 95% CI: − 0.43 to − 0.22) and 25(OH)D. Subgroup analysis revealed continent but not gender influence on the effect size. Meta-regression analysis indicated that age, latitude, and longitude are not sources of heterogeneity. Combining trials showed vitamin D3 supplementation had a mild but insignificant effect on PFM (− 0.31%, 95% CI: − 1.07 to 0.44). Subgroup analyses indicated that type of cholecalciferol and treatment regimens explain source of heterogeneity. Age, baseline body mass index, dose of cholecalciferol, length of study, female (%), and baseline 25(OH)D are not source of heterogeneity. In conclusion, our results state that 25(OH)D level is inversely correlated with PFM but cholecalciferol supplementation had no effect on PFM.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Cassity EP, Redzic M, Teager CR, Thomas DT. The effect of body composition and BMI on 25(OH)D response in vitamin D-supplemented athletes. Eur J Sport Sci. 2016;16:773–9.

    Article  Google Scholar 

  2. 2.

    Hazell TJ, Gallo S, Vanstone CA, Agellon S, Rodd C, Weiler HA. Vitamin D supplementation trial in infancy: body composition effects at 3 years of age in a prospective follow-up study from Montreal. Pediatr Obes. 2016;12:38–47.

    Article  Google Scholar 

  3. 3.

    Mason C, Tapsoba JD, Duggan C, Imayama I, Wang CY, Korde L, et al. Effects of vitamin D3 supplementation on lean mass, muscle strength, and bone mineral density during weight loss: a double-blind randomized controlled trial. J Am Geriatr Soc. 2016;64:769–78.

    Article  Google Scholar 

  4. 4.

    Snijder MB, van Dam RM, Visser M, Deeg DJ, Dekker JM, Bouter LM, et al. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab. 2005;90:4119–23.

    CAS  Article  Google Scholar 

  5. 5.

    Ji L, Gupta M, Feldman BJ. Vitamin D regulates fatty acid composition in subcutaneous adipose tissue through Elovl3. Endocrinology. 2016;157:91–97.

    CAS  Article  Google Scholar 

  6. 6.

    Vilarrasa N, Vendrell J, Maravall J, Elio I, Solano E, San Jose P, et al. Is plasma 25(OH) D related to adipokines, inflammatory cytokines and insulin resistance in both a healthy and morbidly obese population? Endocrine. 2010;38:235–42.

    CAS  Article  Google Scholar 

  7. 7.

    Rahman SA, Chee WS, Yassin Z, Chan SP. Vitamin D status among postmenopausal Malaysian women. Asia Pac J Clin Nutr. 2004;13:255–60.

    CAS  PubMed  Google Scholar 

  8. 8.

    Kozakowski J, Kapuscinska R, Zgliczynski W. Associations of vitamin D concentration with metabolic and hormonal indices in women with polycystic ovary syndrome presenting abdominal and gynoidal type of obesity. Ginekol Pol. 2014;85:765–70.

    PubMed  Google Scholar 

  9. 9.

    Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88:157–61.

    CAS  Article  Google Scholar 

  10. 10.

    Bhatt SP, Misra A, Sharma M, Guleria R, Pandey RM, Luthra K, et al. Vitamin D insufficiency is associated with abdominal obesity in urban Asian Indians without diabetes in North India. Diabetes Technol Ther. 2014;16:392–7.

    CAS  Article  Google Scholar 

  11. 11.

    Forney LA, Earnest CP, Henagan TM, Johnson LE, Castleberry TJ, Stewart LK. Vitamin D status, body composition, and fitness measures in college-aged students. J Strength Cond Res. 2014;28:814–24.

    Article  Google Scholar 

  12. 12.

    Blum M, Dolnikowski G, Seyoum E, Harris SS, Booth SL, Peterson J, et al. Vitamin D(3) in fat tissue. Endocrine. 2008;33:90–94.

    CAS  Article  Google Scholar 

  13. 13.

    Golzarand M, Shab-Bidar S, Koochakpoor G, Speakman JR, Djafarian K. Effect of vitamin D3 supplementation on blood pressure in adults: an updated meta-analysis. Nutr Metab Cardiovasc Dis. 2016;26:663–73.

    CAS  Article  Google Scholar 

  14. 14.

    Ghergherehchi R, Tabrizi A. Vitamin D deficiency and secondary hyperparathyroidism in pediatrics obesity. Casp J Intern Med. 2010;1:119–27.

    Google Scholar 

  15. 15.

    Drincic AT, Armas LAG, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity. 2012;20:1444–8.

    CAS  Article  Google Scholar 

  16. 16.

    Jones SK, Koh GY, Rowling MJ, Schalinske KL. Whole egg consumption prevents diminished serum 25-hydroxycholecalciferol concentrations in type 2 diabetic rats. J Agric Food Chem. 2016;64:120–4.

    CAS  Article  Google Scholar 

  17. 17.

    Flodin L, Cederholm T, Saaf M, Samnegard E, Ekstrom W, Al-Ani AN, et al. Effects of protein-rich nutritional supplementation and bisphosphonates on body composition, handgrip strength and health-related quality of life after hip fracture: a 12-month randomized controlled study. BMC Geriatr. 2015;15:149.

    Article  Google Scholar 

  18. 18.

    Nelson ML, Blum JM, Hollis BW, Rosen C, Sullivan SS. Supplements of 20 μg/d cholecalciferol optimized serum 25-hydroxyvitamin D concentrations in 80% of premenopausal women in winter. J Nutr. 2009;139:540–6.

    CAS  Article  Google Scholar 

  19. 19.

    Nikooyeh B, Neyestani TR, Farvid M, Alavi-Majd H, Houshiarrad A, Kalayi A, et al. Daily consumption of vitamin D- or vitamin D+calcium-fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr. 2011;93:764–71.

    CAS  Article  Google Scholar 

  20. 20.

    Sneve M, Figenschau Y, Jorde R. Supplementation with cholecalciferol does not result in weight reduction in overweight and obese subjects. Eur J Endocrinol. 2008;159:675–84.

    CAS  Article  Google Scholar 

  21. 21.

    Shab-Bidar S, Neyestani TR, Djazayery A, Eshraghian MR, Houshiarrad A, Gharavi A, et al. Regular consumption of vitamin D-fortified yogurt drink (Doogh) improved endothelial biomarkers in subjects with type 2 diabetes: a randomized double-blind clinical trial. BMC Med. 2011;9:125.

    CAS  Article  Google Scholar 

  22. 22.

    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  Google Scholar 

  23. 23.

    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17:1–12.

    CAS  Article  Google Scholar 

  24. 24.

    Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000. p. (http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp).

  25. 25.

    Egger M, Davey-Smith G, Altman D. Systematic reviews in health care: meta-analysis in context. London, UK: John Wiley & Sons; 2008.

  26. 26.

    Higgins J, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses [journal article as teaching resource, deposited by John Flynn]. Br Med J. 2003;327:557–60.

    Article  Google Scholar 

  27. 27.

    Fractional polynomials. Available at: https://wwwstatacom/features/overview/fractional-polynomials/

  28. 28.

    Tobias A. Assessing the influence of a single study in the meta-anyalysis estimate. Stata Technical Bulletin. 1999;8:sbe26

    Google Scholar 

  29. 29.

    Abdelkarem HM, El-Sherif MA, Gomaa SB. Vitamin D status and insulin resistance among young obese Saudi females. Saudi Med J. 2016;37:561–6.

    Article  Google Scholar 

  30. 30.

    Agbaht K, Mercan Y, Kutlu S, Alpdemir MF, Sezgin T. Obesity with and without metabolic syndrome: Do vitamin D and thyroid autoimmunity have a role? Diabetes Res Clin Pract. 2014;106:27–34.

    CAS  Article  Google Scholar 

  31. 31.

    Bolland MJ, Grey AB, Ames RW, Mason BH, Horne AM, Gamble GD, et al. Determinants of vitamin D status in older men living in a subtropical climate. Osteoporos Int. 2006;17:1742–8.

    CAS  Article  Google Scholar 

  32. 32.

    Boot AM, Krenning EP, de Muinck, Keizer-Schrama SM. The relation between 25-hydroxyvitamin D with peak bone mineral density and body composition in healthy young adults. J Pediatr Endocrinol Metab. 2011;24:355–60.

    CAS  Article  Google Scholar 

  33. 33.

    Fitzgerald JS, Peterson BJ, Wilson PB, Rhodes GS, Ingraham SJ. Vitamin D status is associated with adiposity in male ice hockey players. Med Sci Sports Exerc. 2015;47:655–61.

    CAS  Article  Google Scholar 

  34. 34.

    Hao Y, Ma X, Shen Y, Ni J, Luo Y, Xiao Y, et al. Associations of serum 25-hydroxyvitamin D3 levels with visceral adipose tissue in Chinese men with normal glucose tolerance. PLoS One. 2014;9:e86773.

    Article  Google Scholar 

  35. 35.

    Heller JE, Thomas JJ, Hollis BW, Larson-Meyer DE. Relation between vitamin D status and body composition in collegiate athletes. Int J Sport Nutr Exerc Metab. 2015;25:128–35.

    Article  Google Scholar 

  36. 36.

    Kerley CP, Hutchinson K, Bolger K, McGowan A, Faul J, Cormican L. Serum vitamin D is significantly inversely associated with disease severity in Caucasian adults with obstructive sleep apnea syndrome. Sleep. 2016;39:293–300.

    Article  Google Scholar 

  37. 37.

    Kim D, Kim J. Association between serum 25-hydroxyvitamin D levels and adiposity measurements in the general Korean population. Nutr Res Pract. 2016;10:206–11.

    CAS  Article  Google Scholar 

  38. 38.

    McKinney K, Breitkopf CR, Berenson AB. Association of race, body fat and season with vitamin D status among young women: A cross-sectional study. Clin Endocrinol (Oxf). 2008;69:535–41.

    CAS  Article  Google Scholar 

  39. 39.

    Palacios C, Gil K, Perez CM, Joshipura K. Determinants of vitamin D status among overweight and obese Puerto Rican adults. Ann Nutr Metab. 2012;60:35–43.

    CAS  Article  Google Scholar 

  40. 40.

    Shantavasinkul PC, Phanachet P, Puchaiwattananon O, Chailurkit LO, Lepananon T, Chanprasertyotin S, et al. Vitamin D status is a determinant of skeletal muscle mass in obesity according to body fat percentage. Nutrition. 2015;31:801–6.

    CAS  Article  Google Scholar 

  41. 41.

    Stokic E, Kupusinac A, Tomic-Naglic D, Zavisic BK, Mitrovic M, Smiljenic D, et al. Obesity and vitamin D deficiency: trends to promote a more proatherogenic cardiometabolic risk profile. Angiology. 2015;66:237–43.

    Article  Google Scholar 

  42. 42.

    Ter Horst KW, Versteeg RI, Gilijamse PW, Ackermans MT, Heijboer AC, Romijn JA, et al. The vitamin D metabolites 25(OH)D and 1,25(OH)2D are not related to either glucose metabolism or insulin action in obese women. Diabetes Metab. 2016;42:416–23. Epub ahead of print

    Article  Google Scholar 

  43. 43.

    Vilarrasa N, Maravall J, Estepa A, Sanchez R, Masdevall C, Navarro MA, et al. Low 25-hydroxyvitamin D concentrations in obese women: their clinical significance and relationship with anthropometric and body composition variables. J Endocrinol Invest. 2007;30:653–8.

    CAS  Article  Google Scholar 

  44. 44.

    Zhang M, Li P, Zhu Y, Chang H, Wang X, Liu W, et al. Higher visceral fat area increases the risk of vitamin D insufficiency and deficiency in Chinese adults. Nutr Metab. 2015;12:50.

    Article  Google Scholar 

  45. 45.

    Zhang Y, Zhang X, Wang F, Zhang W, Wang C, Yu C, et al. The relationship between obesity indices and serum vitamin D levels in Chinese adults from urban settings. Asia Pac J Clin Nutr. 2016;25:333–9.

    PubMed  Google Scholar 

  46. 46.

    Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR. Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone. 2006;38:317–21.

    CAS  Article  Google Scholar 

  47. 47.

    Frost M, Abrahamsen B, Nielsen TL, Hagen C, Andersen M, Brixen K. Vitamin D status and PTH in young men: a cross-sectional study on associations with bone mineral density, body composition and glucose metabolism. Clin Endocrinol (Oxf). 2010;73:573–80.

    CAS  Article  Google Scholar 

  48. 48.

    Gomez JM, Maravall FJ, Gomez N, Navarro MA, Casamitjana R, Soler J. Relationship between 25-(OH) D3, the IGF-I system, leptin, anthropometric and body composition variables in a healthy, randomly selected population. Horm Metab Res. 2004;36:48–53.

    CAS  Article  Google Scholar 

  49. 49.

    Kremer R, Campbell PP, Reinhardt T, Gilsanz V. Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J Clin Endocrinol Metab. 2009;94:67–73.

    CAS  Article  Google Scholar 

  50. 50.

    Moschonis G, Tanagra S, Koutsikas K, Nikolaidou A, Androutsos O, Manios Y. Association between serum 25-hydroxyvitamin D levels and body composition in postmenopausal women: the Postmenopausal Health Study. Menopause (New Y, NY). 2009;16:701–7.

    Article  Google Scholar 

  51. 51.

    Sadiya A, Ahmed SM, Skaria S, Abusnana S. Vitamin D status and its relationship with metabolic markers in persons with obesity and type 2 diabetes in the UAE: a cross-sectional study. J Diabetes Res. 2014;2014:869307.

    Article  Google Scholar 

  52. 52.

    Tosunbayraktar G, Bas M, Kut A, Buyukkaragoz AH. Low serum 25(OH)D levels are associated to higher BMI and metabolic syndrome parameters in adult subjects in Turkey. Afr Health Sci. 2015;15:1161–9.

    Article  Google Scholar 

  53. 53.

    Nimitphong H, Chailurkit LO, Chanprasertyothin S, Sritara P, Ongphiphadhanakul B. The Association of vitamin D status and fasting glucose according to body fat mass in young healthy Thais. BMC Endocr Disord. 2013;13:60.

    Article  Google Scholar 

  54. 54.

    Obispo Entrenas A, Martín Carvajal F, Legupín Tubío D, Lucena Navarro F, García Caballero M, Gándara Adán N, et al. 5-hydroxy vitamin D and syndrome metabolic components in candidates to bariatric surgery. Nutr Hosp. 2016;33:43–46.

    Article  Google Scholar 

  55. 55.

    Caron-Jobin M, Morisset AS, Tremblay A, Huot C, Legare D, Tchernof A. Elevated serum 25(OH)D concentrations, vitamin D, and calcium intakes are associated with reduced adipocyte size in women. Obesity (Silver Spring, Md). 2011;19:1335–41.

    CAS  Article  Google Scholar 

  56. 56.

    Dasarathy J, Periyalwar P, Allampati S, Bhinder V, Hawkins C, Brandt P, et al. Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int. 2014;34:e118–127.

    CAS  Article  Google Scholar 

  57. 57.

    George JA, Micklesfield LK, Norris SA, Crowther NJ. The association between body composition, 25(OH)D, and PTH and bone mineral density in black african and asian indian population groups. J Clin Endocrinol Metab. 2014;99:2146–54.

    CAS  Article  Google Scholar 

  58. 58.

    Ghavamzadeh S, Mobasseri M, Mahdavi R. The effect of vitamin D supplementation on adiposity, blood glycated hemoglobin, serum leptin and tumor necrosis factor-alpha in type 2 diabetic patients. Int J Prev Med. 2014;5:1091–8.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Salehpour A, Hosseinpanah F, Shidfar F, Vafa M, Razaghi M, Dehghani S, et al. A 12-week double-blind randomized clinical trial of vitamin D3 supplementation on body fat mass in healthy overweight and obese women. Nutr J. 2012;11:78.

    CAS  Article  Google Scholar 

  60. 60.

    Zittermann A, Frisch S, Berthold HK, Gotting C, Kuhn J, Kleesiek K, et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr. 2009;89:1321–7.

    CAS  Article  Google Scholar 

  61. 61.

    Sadiya A, Ahmed SM, Carlsson M, Tesfa Y, George M, Ali SH, et al. Vitamin D3 supplementation and body composition in persons with obesity and type 2 diabetes in the UAE: A randomized controlled double-blinded clinical trial. Clin Nutr. 2016;35:77–82.

    CAS  Article  Google Scholar 

  62. 62.

    Cangussu LM, Nahas-Neto J, Orsatti CL, Bueloni-Dias FN, Nahas EAP. Effect of vitamin D supplementation alone on muscle function in postmenopausal women: a randomized, double-blind, placebo-controlled clinical trial. Osteoporos Int. 2015;26:2413–21.

    CAS  Article  Google Scholar 

  63. 63.

    Wamberg L, Kampmann U, Stodkilde-Jorgensen H, Rejnmark L, Pedersen SB, Richelsen B. Effects of vitamin D supplementation on body fat accumulation, inflammation, and metabolic risk factors in obese adults with low vitamin D levels - results from a randomized trial. Eur J Intern Med. 2013;24:644–9.

    CAS  Article  Google Scholar 

  64. 64.

    Song Q, Sergeev IN. Calcium and vitamin D in obesity. Nutr Res Rev. 2012;25:130–41.

    CAS  Article  Google Scholar 

  65. 65.

    Soares M, Ping-Delfos WCS, Ghanbari M. Calcium and vitamin D for obesity: a review of randomized controlled trials. Eur J Clin Nutr. 2011;65:994–1004.

    CAS  Article  Google Scholar 

  66. 66.

    Pannu PK, Zhao Y, Soares MJ. Reductions in body weight and percent fat mass increase the vitamin D status of obese subjects: a systematic review and metaregression analysis. Nutr Res (New Y, NY). 2016;36:201–13.

    CAS  Article  Google Scholar 

  67. 67.

    Mallard SR, Howe AS, Houghton LA. Vitamin D status and weight loss: a systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am J Clin Nutr. 2016;104:1151–9.

    CAS  Article  Google Scholar 

  68. 68.

    Renzaho AM, Halliday JA, Nowson C. Vitamin D, obesity, and obesity-related chronic disease among ethnic minorities: a systematic review. Nutrition. 2011;27:868–79.

    CAS  Article  Google Scholar 

  69. 69.

    Saneei P, Salehi‐Abargouei A, Esmaillzadeh A. Serum 25‐hydroxy vitamin D levels in relation to body mass index: a systematic review and meta‐analysis. Obes Rev. 2013;14:393–404.

    CAS  Article  Google Scholar 

  70. 70.

    Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10:e1001383.

    Article  Google Scholar 

  71. 71.

    Collaboration PS. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96.

    Article  Google Scholar 

  72. 72.

    Allison DB, Faith MS, Heo M, Kotler DP. Hypothesis concerning the U-shaped relation between body mass index and mortality. Am J Epidemiol. 1997;146:339–49.

    CAS  Article  Google Scholar 

  73. 73.

    Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88:157–61.

    CAS  Article  Google Scholar 

  74. 74.

    Snijder MB, van Dam RM, Visser M, Deeg DJ, Dekker JM, Bouter LM, et al. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab. 2005;90:4119–23.

    CAS  Article  Google Scholar 

  75. 75.

    Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care. 2001;4:499–502.

    CAS  Article  Google Scholar 

  76. 76.

    Lee S, Kuk JL, Hannon TS, Arslanian SA. Race and gender differences in the relationships between anthropometrics and abdominal fat in youth. Obesity. 2008;16:1066–71.

    Article  Google Scholar 

  77. 77.

    Bacha F, Saad R, Gungor N, Janosky J, Arslanian SA. Obesity, regional fat distribution, and syndrome X in obese black versus white adolescents: race differential in diabetogenic and atherogenic risk factors. J Clin Endocrinol Metab. 2003;88:2534–40.

    CAS  Article  Google Scholar 

  78. 78.

    Looker AC. Body fat and vitamin D status in black versus white women. J Clin Endocrinol Metab. 2005;90:635–40.

    CAS  Article  Google Scholar 

  79. 79.

    Rajakumar K, de Las Heras J, Chen TC, Lee S, Holick MF, Arslanian SA. Vitamin D status, adiposity, and lipids in black American and Caucasian children. J Clin Endocrinol Metab. 2011;96:1560–7.

    CAS  Article  Google Scholar 

  80. 80.

    Florez H, Martinez R, Chacra W, Strickman-Stein N, Levis S. Outdoor exercise reduces the risk of hypovitaminosis D in the obese. J Steroid Biochem Mol Biol. 2007;103:679–81.

    CAS  Article  Google Scholar 

  81. 81.

    Alemzadeh R, Kichler J, Babar G, Calhoun M. Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism. 2008;57:183–91.

    CAS  Article  Google Scholar 

  82. 82.

    Harris SS, Dawson-Hughes B. Reduced sun exposure does not explain the inverse association of 25-hydroxyvitamin D with percent body fat in older adults. J Clin Endocrinol Metab. 2007;92:3155–7.

    CAS  Article  Google Scholar 

  83. 83.

    Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.

    CAS  Article  Google Scholar 

  84. 84.

    Pathak K, Soares MJ, Calton EK, Zhao Y, Hallett J. Vitamin D supplementation and body weight status: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2014;15:528–37.

    CAS  Article  Google Scholar 

  85. 85.

    Shahar DR, Schwarzfuchs D, Fraser D, Vardi H, Thiery J, Fiedler GM, et al. Dairy calcium intake, serum vitamin D, and successful weight loss. Am J Clin Nutr. 2010;92:1017–22.

    CAS  Article  Google Scholar 

  86. 86.

    Ortega RM, Aparicio A, Rodríguez-Rodríguez E, Bermejo LM, Perea JM, López-Sobaler AM, et al. Preliminary data about the influence of vitamin D status on the loss of body fat in young overweight/obese women following two types of hypocaloric diet. Br J Nutr. 2008;100:269–72.

    CAS  Article  Google Scholar 

  87. 87.

    Forouhi NG, Ja Luan, Cooper, Boucher A, Wareham BJ, Baseline NJ. serum 25-hydroxy vitamin d is predictive of future glycemic status and insulin resistance the medical research council ely prospective study 1990–2000. Diabetes. 2008;57:2619–25.

    CAS  Article  Google Scholar 

  88. 88.

    Zemel MB, Thompson W, Milstead A, Morris K, Campbell P. Calcium and dairy acceleration of weight and fat loss during energy restriction in obese adults. Obes Res. 2004;12:582–90.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sakineh Shab-Bidar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golzarand, M., Hollis, B.W., Mirmiran, P. et al. Vitamin D supplementation and body fat mass: a systematic review and meta-analysis. Eur J Clin Nutr 72, 1345–1357 (2018). https://doi.org/10.1038/s41430-018-0132-z

Download citation

Further reading

Search

Quick links