Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic anti-virulence efficacy of citral and carvacrol against mixed vaginitis causing Candida albicans and Gardnerella vaginalis: An in vitro and in vivo study

Abstract

Mixed vaginitis due to bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC) is the most prevalent form and presents a significant therapeutic challenge globally. Since, the administration of monotherapy leads to subsequent recurrent infections, synergistic therapy that completely eradicates both pathogens is of dire need to manage mixed vaginities scenario and to prevent its recurrence. The current investigation was focused on exploring the synergistic inhibitory efficacy of phytochemicals against the virulence traits of individual and mixed species of C. albicans and G. vaginalis in vitro and in vivo (Galleria mellonella). Out of five phytochemicals (carvacrol, thymol, cinnamaldehyde, eugenol, and borneol) screened for synergism with citral [(Ct) as the prime molecule owing to its myriad therapeutic potential], carvacrol (Ca) in combination with citral exhibited promising synergistic effect. Time-kill kinetics and one-minute contact-killing assays demonstrated the phenomenal microbicidal effect of Ct-Ca combination against both mono and dual-species within 30 min and one-minute time intervals, respectively. Furthermore, the sub-CMICs (synergistic combinatorial MIC) of Ct-Ca have significantly eradicated the mature biofilms and remarkably reduced the virulence attributes of both C. albicans and G. vaginalis (viz., yeast to hyphae transition, filamentation, protease production, and hydrophobicity index), in single and dual species states. The non-toxic nature of Ct-Ca combination was authenticated using in vitro (human erythrocyte cells) and in vivo (Galleria mellonella) models. In addition, the in vivo efficacy evaluation and subsequent histopathological investigation was done using the invertebrate model system G. mellonella, which further ascertained the effectiveness of Ct-Ca combination in fighting off the infection caused by individual and mixed species of C. albicans and G. vaginalis. Concomitantly, the current work is the first of its kind to delineate the in vitro interaction of C. albicans and G. vaginalis mixed species at their growth and biofilm states, together emphasizes the promising therapeutic potential of acclaimed phytochemicals as combinatorial synergistic therapy against mixed vaginitis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Blostein F, Levin-Sparenberg E, Wagner J, Foxman B. Recurrent vulvovaginal candidiasis. Ann Epidemiol 2017;27:575–82.

    Article  PubMed  Google Scholar 

  2. Donders G, Sziller IO, Paavonen J, Hay P, De Seta F, Bohbot JM, Mendling W. Management of recurrent vulvovaginal candidosis: Narrative review of the literature and European expert panel opinion. Front Cell Infect 2022;12:934353.

  3. Dovnik A, Golle A, Novak D, Arko D, Takač I. Treatment of vulvovaginal candidiasis: a review of the literature. Acta Dermatovenerol Alp Panon Adriat 2015;24:5–7.

    Google Scholar 

  4. Nyirjesy P, Brookhart C, Lazenby G, Schwebke J, Sobel JD. Vulvovaginal Candidiasis: A Review of the Evidence for the 2021 Centers for Disease Control and Prevention of Sexually Transmitted Infections Treatment Guidelines. Clin Infect Dis 2022;74:S162–S168.

    Article  PubMed  Google Scholar 

  5. Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clin Microbiol Rev. 2010;23:253–73.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tumietto F, Posteraro B, Sanguinetti M. Looking for appropriateness in the cure of mixed vaginitis: the role of fenticonazole as an empiric treatment. Future Microbiol. 2019;14:1349–55.

    Article  CAS  PubMed  Google Scholar 

  7. Rathod SD, Klausner JD, Krupp K, Reingold AL, Madhivanan P. Epidemiologic features of Vulvovaginal Candidiasis among reproductive-age women in India. Infect Dis Obstet Gynecol. 2012;2012:1–8.

    Article  Google Scholar 

  8. Hay PE. Bacterial vaginosis as a mixed infection. Polymicrob Dis, ASM Press; 2002; Chapter 7: 125–35.

  9. Hillier SL, Austin M, Macio I, Meyn LA, Badway D, Beigi R. Diagnosis and treatment of vaginal discharge syndromes in community practice settings. Clin Infect Dis. 2021;72:1538–43.

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Lu Y, Chen T, Li R. The female vaginal microbiome in health and bacterial vaginosis. Front cell infect 2021;11:631972.

    Article  CAS  Google Scholar 

  11. Allsworth JE, Peipert JF. Severity of bacterial vaginosis and the risk of sexually transmitted infection. Am J Obstet Gynecol. 2011;205:113–e1.

    Article  PubMed Central  Google Scholar 

  12. Sobel JD, Subramanian C, Foxman B, Fairfax M, Gygax SE. Mixed vaginitis—more than coinfection and with therapeutic implications. Curr Infect Dis Rep. 2013;15:104–8.

    Article  PubMed  Google Scholar 

  13. Yuan D, Chen W, Qin J, Shen D, Qiao Y, Kong B. Associations between bacterial vaginosis, candida vaginitis, trichomonas vaginalis, and vaginal pathogenic community in Chinese women. Am J Transl Res 2021;13:7148.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Abdul-Aziz M, Mahdy MA, Abdul-Ghani R, Alhilali NA, Al-Mujahed LK, Alabsi SA, Almikhlafy AA. Bacterial vaginosis, vulvovaginal candidiasis and trichomonal vaginitis among reproductive-aged women seeking primary healthcare in Sana’a city, Yemen. BMC Infect Dis 2019;19:1–10.

    Article  CAS  Google Scholar 

  15. ez-Llantada JG, Masero AR, Lázaro-Carrasco J, Carballo MJ, Ridocci F, Sosa M, Nieto C. Single-pathogen and mixed vulvovaginal infections among women of reproductive age consulting gynecologists: A cross-sectional study.2021;6:95-103

  16. Souza AC, Silva LK, Queiroz TB, Marques ES, Hiruma-Lima CA, Gaivão IO, Maistro EL. Citral presents cytotoxic and genotoxic effects in human cultured cells. Drug Chem Toxicol. 2020;43:435–40.

    Article  CAS  PubMed  Google Scholar 

  17. Shi C, Song K, Zhang X, Sun Y, Sui Y, Chen Y, Xia X. Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. Plos one. 2016;11:e0159006.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oliveira HBM, Selis NDN, Sampaio BA, Júnior MNS, de Carvalho SP, de Almeida JB, Marques LM. Citral modulates virulence factors in methicillin-resistant Staphylococcus aureus. Sci Rep. 2021;11:1–11.

    Article  Google Scholar 

  19. Somolinos M, García D, Condón S, Mackey B, Pagán R. Inactivation of Escherichia coli by citral. J Appl Microbiol 2010;108:1928–39.

    Article  CAS  PubMed  Google Scholar 

  20. Kim JM, Marshall MR, Cornell JA, Preston JF III, Wei CI. Antibacterial activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and on fish cubes. J Food Sci 1995;60:1364–8.

    Article  CAS  Google Scholar 

  21. Silva-Angulo AB, Zanini SF, Rosenthal A, Rodrigo D, Klein G, Martínez A. Comparative study of the effects of citral on the growth and injury of Listeria innocua and Listeria monocytogenes cells. PLoS One. 2015;10:e0114026.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lima IO, de Medeiros Nóbrega F, de Oliveira WA, de Oliveira Lima E, Albuquerque Menezes E, Afrânio Cunha F, de Fátima Formiga Melo Diniz M. Anti-Candida albicans effectiveness of citral and investigation of mode of action. Pharm Biol 2012;50:1536–41.

    Article  CAS  PubMed  Google Scholar 

  23. Gowrishankar S, Pandian SK. Modulation of Staphylococcus epidermidis (RP62A) extracellular polymeric layer by marine cyclic dipeptide-cyclo (l-leucyl-l-prolyl) thwarts biofilm formation. Biochim Biophys Acta Biomembr BBA-BIOMEMBRANES. 2017;1859:1254–62.

    Article  CAS  PubMed  Google Scholar 

  24. Muthamil S, Balasubramaniam B, Balamurugan K, Pandian SK. Synergistic effect of quinic acid derived from Syzygium cumini and undecanoic acid against Candida spp. biofilm and virulence. Front Microbiol 2018;9:2835.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Öz Y, Özdemir HG, Gökbolat E, Kiraz N, Ilkit M, Seyedmousavi S. Time-kill kinetics and in vitro antifungal susceptibility of non-fumigatus Aspergillus species isolated from patients with ocular mycoses. Mycopathologia. 2016;181:225–33.

    Article  PubMed  Google Scholar 

  26. Vincent M, Duval RE, Hartemann P, Engels‐Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol. 2018;124:1032–46.

    Article  CAS  PubMed  Google Scholar 

  27. Jothi R, Sangavi R, Kumar P, Pandian SK, Gowrishankar S. Catechol thwarts virulent dimorphism in Candida albicans and potentiates the antifungal efficacy of azoles and polyenes. Sci Rep. 2021;11:21049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manoharan RK, Lee JH, Lee J. Antibiofilm and antihyphal activities of cedar leaf essential oil, camphor, and fenchone derivatives against Candida albicans. Front Microbiol 2017;8:1476.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rajasekharan SK, Kamalanathan C, Ravichandran V, Ray AK, Satish AS, Mohanvel SK. Mannich base limits Candida albicans virulence by inactivating Ras-cAMP-PKA pathway. Sci Rep. 2018;8:1–9.

    Article  Google Scholar 

  30. Akçağlar S, Ener B, Töre O. Acid proteinase enzyme activity in Candida albicans strains: a comparison of spectrophotometry and plate methods. Turk J Biol 2011;35:559–67.

    Google Scholar 

  31. Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol 2015;6:205.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Min KR, Galvis A, Williams B, Rayala R, Cudic P, Ajdic D. Antibacterial and antibiofilm activities of a novel synthetic cyclic lipopeptide against cariogenic Streptococcus mutans UA159. Antimicrob Agents Chemother 2017;61:e00776–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonifácio BV, Vila TVM, Masiero IF, Da Silva PB, Da Silva IC, de Oliveira Lopes É, Bauab TM. Antifungal activity of a hydroethanolic extracts from Astronium urundeuva leaves against Candida albicans and Candida glabrata. Front Microbiol. 2019;10:2642.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Turecka CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, Lopez-Ribot JL. A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance. npj Biofilms Microbiomes. 2015;1:1–8.

    Google Scholar 

  35. Ignasiak K, Chylewska A, Kawiak A, Waleron KF. Antifungal activity and mechanism of action of the Co (III) coordination complexes with diamine chelate ligands against reference and clinical strains of Candida spp. Front Microbiol 2018;9:1594.

    Article  Google Scholar 

  36. Otshudi AL, Foriers A, Vercruysse A, Van Zeebroeck A, Lauwers S. In vitro antimicrobial activity of six medicinal plants traditionally used for the treatment of dysentery and diarrhoea in Democratic Republic of Congo (DRC). Phytomedicine. 2000;7:167–72.

    Article  CAS  PubMed  Google Scholar 

  37. Dong X, Nao J. Relationship between the therapeutic potential of various plant-derived bioactive compounds and their related microRNAs in neurological disorders. Phytomedicine. 2023;108:154501.

    Article  CAS  PubMed  Google Scholar 

  38. Ding H, You Q, Li D, Liu Y. 5-Demethylnobiletin: Insights into its pharmacological activity, mechanisms, pharmacokinetics and toxicity. Phytomedicine. 2022;104:154285.

    Article  CAS  PubMed  Google Scholar 

  39. Khalilzadeh S, Eftekhar T, Rahimi R, Mehriardestani M, Tabarrai M. An evidence-based review of medicinal plants used for the treatment of vaginitis by Avicenna in” the Canon of Medicine”. Galen Med. 2019;8:e1270.

    Article  Google Scholar 

  40. Ogunmefun OT. Phytochemicals—God’s endowment of curative power in plants. Phytochemicals: Source of Antioxidants and Role in Disease Prevention 2018;7–23.

  41. Patrulea V, Gan BH, Perron K, Cai X, Abdel-Sayed P, Sublet E, Jordan O. Synergistic effects of antimicrobial peptide dendrimer-chitosan polymer conjugates against Pseudomonas aeruginosa. Carbohydr Polym 2022;280:119025.

    Article  CAS  PubMed  Google Scholar 

  42. Rajendran R, Borghi E, Falleni M, Perdoni F, Tosi D, Lappin DF, Nile C. Acetylcholine protects against Candida albicans infection by inhibiting biofilm formation and promoting hemocyte function in a Galleria mellonella infection model. Eukaryot Cell 2015;14:834–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leite, MCA, Bezerra, APDB, Sousa, JPD, Guerra, FQS, & Lima, EDO (2014). Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid. Based Complementary Altern. Med. 2014.

  44. Jung HS, Ehlers MM, Lombaard H, Redelinghuys MJ, Kock MM. Etiology of bacterial vaginosis and polymicrobial biofilm formation. Crit Rev Microbiol 2017;43:651–67.

    Article  PubMed  Google Scholar 

  45. Hardy L, Jespers V, Dahchour N, Mwambarangwe L, Musengamana V, Vaneechoutte M, Crucitti T. Unravelling the bacterial vaginosis-associated biofilm: a multiplex Gardnerella vaginalis and Atopobium vaginae fluorescence in situ hybridization assay using peptide nucleic acid probes. PloS one. 2015;10:e0136658.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Swidsinski A, Loening-Baucke V, Mendling W, Dörffel Y, Schilling J, Halwani Z, Swidsinski S. Infection through structured polymicrobial Gardnerella biofilms (StPM-GB). Histol Histopathol 2014;29:567–87.

    PubMed  Google Scholar 

  47. Cakiroglu Y, Caliskan S, Doger E, Ozcan S, Caliskan E. Does removal of CU-IUD in patients with biofilm forming candida really maintain regression of clinical symptoms? J Obstet Gynaecol 2015;35:600–3.

    Article  CAS  PubMed  Google Scholar 

  48. Filardo S, Di Pietro M, Tranquilli G, Sessa R. Biofilm in genital ecosystem: a potential risk factor for Chlamydia trachomatis infection. Can J Infect Dis Med Microbiol. 2019;2019:1672109.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pereira-Cenci T, Deng DM, Kraneveld EA, Manders EMM, Cury AADB, Ten Cate JM, Crielaard W. The effect of Streptococcus mutans and Candida glabrata on Candida albicans biofilms formed on different surfaces. Arch Oral Biol 2008;53:755–64.

    Article  CAS  PubMed  Google Scholar 

  50. Joyner PM, Liu J, Zhang Z, Merritt J, Qi F, Cichewicz RH. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org Biomol Chem 2010;8:5486–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jabra-Rizk MA, Kong EF, Tsui C, Nguyen MH, Clancy CJ, Fidel PL Jr, Noverr M. Candida albicans pathogenesis: fitting within the host-microbe damage response framework. Infect Immun 2016;84:2724–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wächtler B, Wilson D, Hube B. Candida albicans adhesion to and invasion and damage of vaginal epithelial cells: stage-specific inhibition by clotrimazole and bifonazole. Antimicrob Agents Chemother 2011;55:4436–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Harriott MM, Lilly EA, Rodriguez TE, Fidel PL Jr, Noverr MC. Candida albicans forms biofilms on the vaginal mucosa. Microbiology. 2010;156:3635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mail MH, Himratul-Aznita WH, Musa MY. Anti-hyphal properties of potential bioactive compounds for oral rinse in suppression of Candida growth. Biotechnol Biotechnol Equip 2017;31:989–99.

    Article  CAS  Google Scholar 

  55. Pericolini E, Gabrielli E, Amacker M, Kasper L, Roselletti E, Luciano E, Cassone A. Secretory aspartyl proteinases cause vaginitis and can mediate vaginitis caused by Candida albicans in mice. MBio. 2015;6:e00724–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lewis WG, Robinson LS, Gilbert NM, Perry JC, Lewis AL. Degradation, foraging, and depletion of mucus sialoglycans by the vagina-adapted Actinobacterium Gardnerella vaginalis. J Biol Chem 2013;288:12067–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ombrella AM, Racca L, Ramos L. Protease and phospholipase activities of Candida albicans isolated from vaginal secretions with different pH values. Rev Iberoam Micol. 2008;25:12–16.

    Article  PubMed  Google Scholar 

  58. Hazen KC, Brawner DL, Riesselman MH, Jutila MA, Cutler JE. Differential adherence of hydrophobic and hydrophilic Candida albicans yeast cells to mouse tissues. Infect Immun. 1991;59:907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Megaw J, Thompson TP, Lafferty RA, Gilmore BF. Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. Chemosphere. 2015;139:197–201.

    Article  CAS  PubMed  Google Scholar 

  60. Allegra E, Titball RW, Carter J, Champion OL. Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere. 2018;198:469–72.

    Article  CAS  PubMed  Google Scholar 

  61. Champion OL, Titball RW, Bates S. Standardization of G. mellonella larvae to provide reliable and reproducible results in the study of fungal pathogens. J Fungi 2018;4:108.

    Article  CAS  Google Scholar 

  62. Maurer E, Hörtnagl C, Lackner M, Grässle D, Naschberger V, Moser P, Binder U. Galleria mellonella as a model system to study virulence potential of mucormycetes and evaluation of antifungal treatment. Med Mycol 2019;57:351–62.

    Article  CAS  PubMed  Google Scholar 

  63. Sheehan G, Tully L, Kavanagh KA. Candida albicans increases the pathogenicity of Staphylococcus aureus during polymicrobial infection of Galleria mellonella larvae. Microbiology. 2020;166:375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the computational and bioinformatics facility provided by the Bioinformatics Infrastructure Facility (funded by DBT, GOI; File No. BT/BI/25/012/2012, BIF). The authors also acknowledge the DST-FIST [Grant No. SR/FST/LSI-639/2015(C)], UGC-SAP [Grant No. F.5-1/2018/DRS-II (SAP-II)], DST-PURSE [Grant No. SR/PURSE Phase 2/38 (G)], and RUSA- Phase 2.0, Government of India [F. 24-51/2014-U, Policy (TN Multi-Gen)] for providing instrumentation facilities. RJ and NH sincerely acknowledge Rashtriya Uchchatar Shiksha Abhiyan (RUSA), MHRD, Government of India [F. 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn, GOI] for providing RUSA-2.0 Ph.D. Fellowship.

Funding

SG gratefully acknowledges the Department of Science and Technology- Science and Engineering Research Board (DST-SERB)-EEQ Project Grant (File No.:EEQ/2020/000288) and Indian Council of Medical Research (ICMR) Adhoc Project Grant (File No. 5/4/2-5/Oral Health/2021-NCD-II). The authors thankfully acknowledge the financial support rendered by RUSA 2.0 [F.24-51/2014-U, Policy (TN Multi-Gen), Department of Education, Government of India].

Author information

Authors and Affiliations

Authors

Contributions

Ravi Jothi: Designed the research idea, analyzed the data, result interpretation, and wrote the original draft; Shanmugaraj Gowrishankar: Designed the research idea, Supervision, and critically revised the original draft.

Corresponding author

Correspondence to Shanmugaraj Gowrishankar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jothi, R., Gowrishankar, S. Synergistic anti-virulence efficacy of citral and carvacrol against mixed vaginitis causing Candida albicans and Gardnerella vaginalis: An in vitro and in vivo study. J Antibiot (2024). https://doi.org/10.1038/s41429-024-00728-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41429-024-00728-0

Search

Quick links