Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncovering the potentiality of quinazoline derivatives against Pseudomonas aeruginosa with antimicrobial synergy and SAR analysis

Abstract

Antimicrobial resistance has emerged as a covert global health crisis, posing a significant threat to humanity. If left unaddressed, it is poised to become the foremost cause of mortality worldwide. Among the multitude of resistant bacterial pathogens, Pseudomonas aeruginosa, a Gram-negative, facultative bacterium, has been responsible for mild to deadly infections. It is now enlisted as a global critical priority pathogen by WHO. Urgent measures are required to combat this formidable pathogen, necessitating the development of novel anti-pseudomonal drugs. To confront this pressing issue, we conducted an extensive screening of 3561 compounds from the ChemDiv library, resulting in the discovery of potent anti-pseudomonal quinazoline derivatives. Among the identified compounds, IDD-8E has emerged as a lead molecule, exhibiting exceptional efficacy against P. aeruginosa while displaying no cytotoxicity. Moreover, IDD-8E demonstrated significant pseudomonal killing, disruption of pseudomonal biofilm and other anti-bacterial properties comparable to a well-known antibiotic rifampicin. Additionally, IDD-8E’s synergy with different antibiotics further strengthens its potential as a powerful anti-pseudomonal agent. IDD-8E also exhibited significant antimicrobial efficacy against other ESKAPE pathogens. Moreover, we elucidated the Structure-Activity-Relationship (SAR) of IDD-8E targeting the essential WaaP protein in P. aeruginosa. Altogether, our findings emphasize the promise of IDD-8E as a clinical candidate for novel anti-pseudomonal drugs, offering hope in the battle against antibiotic resistance and its devastating impact on global health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022;20:193–205.

    Article  CAS  PubMed  Google Scholar 

  2. Bloom DE, Cadarette D. Infectious Disease threats in the twenty-first century: strengthening the global response. Front Immunol. 2019;10:549.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Piret J, Boivin G. Pandemics throughout history. Front Microbiol. 2020;11:631736.

    Article  PubMed  Google Scholar 

  4. Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious diseases. Nature. 2007;447:279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109:309–18.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Larkin H. Increasing antimicrobial resistance poses global threat, WHO says. JAMA 2023;329:200.

    PubMed  Google Scholar 

  8. Cameron A, Esiovwa R, Connolly J, Hursthouse A, Henriquez F. Antimicrobial resistance as a global health threat: the need to learn lessons from the COVID-19 pandemic. Glob Policy. 2022;13:179–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. EclinicalMedicine. Antimicrobial resistance: a top ten global public health threat. EClinicalMedicine. 2021;41:101221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Kraker ME, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13:e1002184.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.

    Article  Google Scholar 

  12. Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol. 2012;10:841–51.

    Article  CAS  PubMed  Google Scholar 

  13. Jurado-Martin I, Sainz-Mejias M, McClean S. Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci. 2021;22:3128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells. 2023;12:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67:159–73.

    Article  CAS  PubMed  Google Scholar 

  17. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000;2:1051–60.

    Article  CAS  PubMed  Google Scholar 

  18. Yin R, Cheng J, Wang J, Li P, Lin J. Treatment of Pseudomonas aeruginosa infectious biofilms: challenges and strategies. Front Microbiol. 2022;13:955286.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Davies O, Bennett S. WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO Newsletters. 2017.

  20. Jayaraman N, Mahapa A, Samanta G, Maiti K, Chatterji D. Mannopyranoside glycolipids inhibit mycobacterial growth, biofilm and potentiate isoniazid inhibition activities in M. smegmatis. ChemBioChem. 2019;20:1966–76.

    Article  PubMed  Google Scholar 

  21. Dolan SK. Current knowledge and future directions in developing strategies to combat Pseudomonas aeruginosa Infection. J Mol Biol. 2020;432:5509–28.

    Article  CAS  PubMed  Google Scholar 

  22. Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial biofilm eradication agents: a current review. Front Chem. 2019;7:824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jangra V, Sharma N, Chhillar AK. Therapeutic approaches for combating Pseudomonas aeruginosa infections. Microbes Infect. 2022;24:104950.

    Article  CAS  PubMed  Google Scholar 

  24. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016;306:48–58.

    Article  CAS  PubMed  Google Scholar 

  25. Schnappinger D. Genetic approaches to facilitate antibacterial drug development. Cold Spring Harb Perspect Med. 2015;5:a021139.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Matano LM, Morris HG, Wood BM, Meredith TC, Walker S. Accelerating the discovery of antibacterial compounds using pathway-directed whole cell screening. Bioorg Med Chem. 2016;24:6307–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brotz-Oesterhelt H, Sass P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol. 2010;5:1553–79.

    Article  PubMed  Google Scholar 

  28. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507–19.

    Article  CAS  PubMed  Google Scholar 

  29. Lechartier B, Rybniker J, Zumla A, Cole ST. Tuberculosis drug discovery in the post-post-genomic era. EMBO Mol Med. 2014;6:158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miethke M, Pieroni M, Weber T, Bronstrup M, Hammann P, Halby L, et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021;5:726–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boyd NK, Teng C, Frei CR. Brief overview of approaches and challenges in new antibiotic development: a focus on drug repurposing. Front Cell Infect Microbiol. 2021;11:684515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao X, Lam JS. WaaP of Pseudomonas aeruginosa is a novel eukaryotic type protein-tyrosine kinase as well as a sugar kinase essential for the biosynthesis of core lipopolysaccharide. J Biol Chem. 2002;277:4722–30.

    Article  CAS  PubMed  Google Scholar 

  33. Sarkar B, Mahapa A, Dey K, Manhas R, Chatterji D, Jayaraman N. Aza-Michael promoted glycoconjugation of PETIM dendrimers and selectivity in mycobacterial growth inhibitions. RSC Adv. 2023;13:4669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nadri MH, Salim Y, Basar N, Yahya A, Zulkifli RM. Antioxidant activities and tyrosinase inhibition effects of Phaleria macrocarpa extracts. Afr J Tradit Complement Alter Med. 2014;11:107–11.

    Article  Google Scholar 

  35. Clinical, Institute LS. Performance standards for antimicrobial susceptibility testing. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. p. 106–12.

  36. Mahapa A, Samanta GC, Maiti K, Chatterji D, Jayaraman N. Mannopyranoside glycolipids inhibit mycobacterial and biofilm growth and potentiate isoniazid inhibition activities in M. smegmatis. ChemBioChem. 2019;20:1966–76.

    Article  CAS  PubMed  Google Scholar 

  37. Lambert RJ, Pearson J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol. 2000;88:784–90.

    Article  CAS  PubMed  Google Scholar 

  38. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.

  39. Standards NCfCL, Barry AL. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. Wayne, PA: National Committee for Clinical Laboratory Standards; 1999.

  40. Maiti K, Syal K, Chatterji D, Jayaraman N. Synthetic arabinomannan heptasaccharide glycolipids inhibit biofilm growth and augment isoniazid effects in mycobacterium smegmatis. ChemBioChem. 2017;18:1959–70.

    Article  CAS  PubMed  Google Scholar 

  41. Caiazza NC, Shanks RM, O’toole G. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol. 2005;187:7351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bellio P, Fagnani L, Nazzicone L, Celenza G. New and simplified method for drug combination studies by checkerboard assay. MethodsX. 2021;8:101543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orhan G, Bayram A, Zer Y, Balci I. Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J Clin Microbiol. 2005;43:140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hall M, Middleton R, Westmacott D. The fractional inhibitory concentration (FIC) index as a measure of synergy. J Antimicrob Chemother. 1983;11:427–33.

    Article  CAS  PubMed  Google Scholar 

  45. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52:1.

  46. Kreamer NNK, Chopra R, Caughlan RE, Fabbro D, Fang E, Gee P, et al. Acylated-acyl carrier protein stabilizes the Pseudomonas aeruginosa WaaP lipopolysaccharide heptose kinase. Sci Rep. 2018;8:14124.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gautam S, Mahapa A, Yeramala L, Gandhi A, Krishnan S, Kutti RV, et al. Regulatory mechanisms of c‐di‐AMP synthase from Mycobacterium smegmatis revealed by a structure: function analysis. Protein Sci. 2023;32:e4568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Șandor A, Ionuț I, Marc G, Oniga I, Eniu D, Oniga O. Structure–activity relationship studies based on quinazoline derivatives as EGFR kinase inhibitors (2017–Present). Pharmaceuticals. 2023;16:534.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meletiadis J, Pournaras S, Roilides E, Walsh TJ. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob Agents Chemother. 2010;54:602–9.

    Article  CAS  PubMed  Google Scholar 

  51. Karan R, Agarwal P, Sinha M, Mahato N. Recent advances on quinazoline derivatives: a potential bioactive scaffold in medicinal chemistry. ChemEngineering. 2021;5:73.

    Article  CAS  Google Scholar 

  52. Shang XF, Morris-Natschke SL, Yang GZ, Liu YQ, Guo X, Xu XS, et al. Biologically active quinoline and quinazoline alkaloids part II. Med Res Rev. 2018;38:1614–60.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shang XF, Morris-Natschke SL, Liu YQ, Guo X, Xu XS, Goto M, et al. Biologically active quinoline and quinazoline alkaloids part I. Med Res Rev. 2018;38:775–828.

    Article  CAS  PubMed  Google Scholar 

  54. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  55. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib) relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 2004;64:6652–9.

    Article  CAS  PubMed  Google Scholar 

  56. Raymond E, Faivre S, Armand JP. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs 2000;60:15–23.

    Article  CAS  PubMed  Google Scholar 

  57. Dungo RT, Keating GM. Afatinib: first global approval. Drugs. 2013;73:1503–15.

    Article  CAS  PubMed  Google Scholar 

  58. Shao H, Wells A. Deciphering the molecular mechanism of enhanced tumor activity of the EGFR variant T790M/L858R using melanoma cell lines. Front Oncol. 2023;13:1163504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–81.

    Article  CAS  PubMed  Google Scholar 

  60. Guo Y, Du Z, Shi T. Structural Analysis of Interactions between Epidermal Growth Factor Receptor (EGFR) Mutants and Their Inhibitors. Biophysica. 2023;3:203–13.

    Article  Google Scholar 

  61. Amelia T, Kartasasmita RE, Ohwada T, Tjahjono DH. Structural insight and development of EGFR tyrosine kinase inhibitors. Molecules. 2022;27:819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yethon JA, Whitfield C. Purification and characterization of WaaP from Escherichia coli, a lipopolysaccharide kinase essential for outer membrane stability. J Biol Chem. 2001;276:5498–504.

    Article  CAS  PubMed  Google Scholar 

  63. Lam JS, Taylor VL, Islam ST, Hao Y, Kocincova D. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol. 2011;2:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Walsh AG, Matewish MJ, Burrows LL, Monteiro MA, Perry MB, Lam JS. Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa. Mol Microbiol. 2000;35:718–27.

    Article  CAS  PubMed  Google Scholar 

  65. Le Y, Gan Y, Fu Y, Liu J, Li W, Zou X, et al. Design, synthesis and in vitro biological evaluation of quinazolinone derivatives as EGFR inhibitors for antitumor treatment. J Enzym Inhib Med Chem. 2020;35:555–64.

    Article  CAS  Google Scholar 

  66. Jafari E, Khajouei MR, Hassanzadeh F, Hakimelahi GH, Khodarahmi GA. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Res Pharm Sci. 2016;11:1–14.

    PubMed  PubMed Central  Google Scholar 

  67. Jadhavar PS, Patel KI, Dhameliya TM, Saha N, Vaja MD, Krishna VS, et al. Benzimidazoquinazolines as new potent anti-TB chemotypes: Design, synthesis, and biological evaluation. Bioorg Chem. 2020;99:103774.

    Article  CAS  PubMed  Google Scholar 

  68. Gawad J, Bonde C. Design, synthesis and biological evaluation of novel 6-(trifluoromethyl)-N-(4-oxothiazolidin-3-yl) quinazoline-2-carboxamide derivatives as a potential DprE1 inhibitors. J Mol Struct. 2020;1217:128394.

    Article  CAS  Google Scholar 

  69. Chevalier J, Mahamoud A, Baitiche M, Adam E, Viveiros M, Smarandache A, et al. Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strains. Int J Antimicrob Agents. 2010;36:164–8.

    Article  CAS  PubMed  Google Scholar 

  70. Deka B, Suri M, Sarma S, Devi MV, Bora A, Sen T, et al. Potentiating the intracellular killing of Staphylococcus aureus by dihydroquinazoline analogues as NorA efflux pump inhibitor. Bioorg Med Chem. 2022;54:116580.

    Article  CAS  PubMed  Google Scholar 

  71. Cedraro N, Cannalire R, Astolfi A, Mangiaterra G, Felicetti T, Vaiasicca S, et al. From Quinoline to Quinazoline-Based S. aureus NorA Efflux Pump Inhibitors by Coupling a Focused Scaffold Hopping Approach and a Pharmacophore Search. ChemMedChem. 2021;16:3044–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci. 2004;101:13306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Voigtlaender M, Schneider-Merck T, Trepel M. Lapatinib. Small Mol Oncol. 2018;211:19–44.

    Article  CAS  Google Scholar 

  74. Guillon RM, Pagniez F, Picot C, Hédou D, Tonnerre A, Chosson E, et al. Discovery of a novel broad-spectrum antifungal agent derived from albaconazole. ACS Med Chem Lett. 2013;4:288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasqualotto A, Denning D. New and emerging treatments for fungal infections. J Antimicrob Chemother. 2008;61:i19–i30.

    Article  CAS  PubMed  Google Scholar 

  76. Santos-Ballardo L, Garcia-Paez F, Picos-Corrales LA, Ochoa-Teran A, Bastidas P, Calderón-Zamora L, et al. Synthesis, biological evaluation and molecular docking of 3-substituted quinazoline-2, 4 (1 H, 3 H)-diones. J Chem Sci. 2020;132:1–10.

    Article  Google Scholar 

  77. Kashaw SK, Kashaw V, Mishra VK, Mishra M, Agrawal RK. Novel Quinazoline-Chalcone Hybrids As Antiplasmodium Agents: Synthesis, Biological Evaluation And Molecular Docking. J Adv Sci Res. 2020;11:85–99.

    Google Scholar 

  78. El Helou G, Razonable RR. Letermovir for the prevention of cytomegalovirus infection and disease in transplant recipients: an evidence-based review. Infect Drug Resist. 2019;12:1481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang M, Zhang G, Wang Y, Wang J, Zhu M, Cen S, et al. Design, synthesis and anti-influenza A virus activity of novel 2, 4-disubstituted quinazoline derivatives. Bioorg Med Chem Lett. 2020;30:127143.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang GP, Pan JK, Zhang J, Wu ZX, Liu DY, Zhao L. Design, synthesis, antiviral activities of novel phosphonate derivatives containing quinazoline based on chalone motif. J Heterocycl Chem. 2017;54:2548–55.

    Article  CAS  Google Scholar 

  81. Janardhanan J, Bouley R, Martinez-Caballero S, Peng Z, Batuecas-Mordillo M, Meisel JE, et al. The quinazolinone allosteric inhibitor of PBP 2a synergizes with piperacillin and tazobactam against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2019;63:e02637–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kumar AS, Kudva J, Lahtinen M, Peuronen A, Sadashiva R, Naral D. Synthesis, characterization, crystal structures and biological screening of 4-amino quinazoline sulfonamide derivatives. J Mol Struct. 2019;1190:29–36.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CSIR-IIIM (MLP-21005) and Science and Engineering Research Board- Start-up Research Grant (SERB-SRG) Grant no: SRG/2023/000145 for funding. AR is thankful for the UGC JRF fellowship. The authors acknowledge Jyoti Kumari and Sapna Rajput for their assistance in time kill assay (CFU method) and ChemDiv compound dilutions, respectively. This manuscript has been given institutional number: CSIR-IIIM/IPR/00633, dated:10/20/2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avisek Mahapa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manhas, R., Rathore, A., Havelikar, U. et al. Uncovering the potentiality of quinazoline derivatives against Pseudomonas aeruginosa with antimicrobial synergy and SAR analysis. J Antibiot 77, 365–381 (2024). https://doi.org/10.1038/s41429-024-00717-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-024-00717-3

Search

Quick links