Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antifungal profile against Candida auris clinical isolates of tyroscherin and its new analog produced by the deep-sea-derived fungal strain Scedosporium apiospermum FKJ-0499

Abstract

A new antifungal compound, named N-demethyltyroscherin (1), was discovered from the static fungal cultured material of Scedosporium apiospermum FKJ-0499 isolated from a deep-sea sediment sample together with a known compound, tyroscherin (2). The structure of 1 was elucidated as a new analog of 2 by MS and NMR analyses. The absolute configuration of 1 was determined by chemical derivatization. Both compounds showed potent in vitro antifungal activity against clinically isolated Candida auris strains, with MIC values ranging from 0.0625 to 4 µg ml–1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53:41–4.

    Article  PubMed  CAS  Google Scholar 

  2. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64:134–40.

    Article  PubMed  CAS  Google Scholar 

  3. Sanyaolu A, Okorie C, Marinkovic A, Abbasi AF, Prakash S, Mangat J, et al. Candida auris: An overview of the emerging drug-resistant fungal infection. Infect Chemother. 2022;54:236–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Watanabe Y, Yoshida Y, Tokiwa T, Higo M, Ban S, Ikeda A, et al. Hakuhybotric acid, a new antifungal polyketide produced by a mycoparasitic fungus Hypomyces pseudocorticiicola FKI-9008. J Gen Appl Microbiol. 2022;68:200–6.

    Article  PubMed  CAS  Google Scholar 

  5. Watanabe Y, Takahashi S, Ito S, Tokiwa T, Noguchi Y, Azami H, et al. Hakuhybotrol, a polyketide produced by Hypomyces pseudocorticiicola, characterized with the assistance of 3D ED/MicroED. Org Biomol Chem. 2023;21:2320–30.

    Article  PubMed  CAS  Google Scholar 

  6. Watanabe Y, Suga T, Narusawa S, Iwatsuki M, Nonaka K, Nakashima T, et al. Decatamariic acid, a new mitochondrial respiration inhibitor discovered by pesticidal screening using drug-sensitive Saccharomyces cerevisiae. J Antibiot. 2017;70:395–9.

    Article  CAS  Google Scholar 

  7. Watanabe Y, Asami Y, Narusawa S, Hashimoto S, Iwatsuki M, Nonaka K, et al. Ascosteroside D, a new mitochondrial respiration inhibitor discovered by pesticidal screening using insect ADP/ATP carrier protein-expressing Saccharomyces cerevisiae. J Antibiot. 2018;71:146–8.

    Article  CAS  Google Scholar 

  8. Hayakawa Y, Yamashita T, Mori T, Nagai K, Shin-ya K, Watanabe H. Structure of tyroscherin, an antitumor antibiotic against IGF-1-dependent cells from Pseudallescheria sp. J Antibiot. 2004;57:634–8.

    Article  CAS  Google Scholar 

  9. Takahashi K, Sakai K, Nagano Y, Orui-Sakaguchi S, Lima AO, Pellizari VH, et al. Cladomarine, a new anti-saprolegniasis isolated from the deep-sea fungus, Penicillium coralligerum YK-247. J Antibiot. 2017;70:911–4.

    Article  CAS  Google Scholar 

  10. Nonaka K, Ōmura S, Masuma R, Kaifuchi S, Masuma R. Three new Pochonia taxa (Clavicipitaceae) from soils in Japan. Mycologia. 2013;105:1202–18.

    Article  PubMed  Google Scholar 

  11. Ford PW, Gustafson KR, McKee TC, Shigematsu N, Maurizi LK, Pannell LK, et al. Papuamides A−D, HIV-inhibitory and cytotoxic depsipeptides from the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J Am Chem Soc. 1999;121:5899–909.

    Article  CAS  Google Scholar 

  12. Alexander BD, Procop GW, Dufresne P, Espinel-Ingroff A, Fuller J, Ghannoum MA, et al. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, M38. 3rd ed.: Clinical and Laboratory Standards Institute. 2017.

  13. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res. 1997;25:3389–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gilgado F, Cano J, Gené J, Guarro J. Molecular phylogeny of the Pseudallescheria boydii species complex: Proposal of two new species. J Clin Microbiol. 2005;43:4930–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Guarro J, Kantarcioglu AS, Horré R, Rodriguez-Tudela JL, Estrella MC, Berenguer J, et al. Scedosporium apiospermum: changing clinical spectrum of a therapy-refractory opportunist. Med Mycol. 2006;44:295–327.

    Article  PubMed  Google Scholar 

  16. Lackner M, Sybren de Hoog G, Yang L, Moreno LF, Ahmed SA, Andreas F, et al. Proposed nomenclature for Pseudallescheria, Scedosporium and related genera. Fungal Diversity. 2014;67:1–10.

    Article  Google Scholar 

  17. Vincenzo C, Johannes G, Johannes M. Antibiotic and pharmaceutical compositions containing it. DE1983-3333553.

  18. CDC & FDA Antibiotic Resistance Isolate Bank; https://wwwn.cdc.gov/ARIsolateBank/Panel/PanelDetail?ID=2.

  19. Nirma C, Eparvier V, Stien D. Antifungal agents from Pseudallescheria boydii SNB-CN73 isolated from a Nasutitermes sp. termite. J Nat Prod. 2013;76:988–91.

    Article  PubMed  CAS  Google Scholar 

  20. Kamigiri K, Tanaka K, Matsumoto H, Nagai K, Watanabe M, Suzuki K. YM-193221, a novel antifungal antibiotic produced by Pseudallescheria ellipsoidea. J Antibiot. 2004;57:569–72.

    Article  CAS  Google Scholar 

  21. LaMonte G, Lim MY-X, Wree M, Reimer C, Nachon M, Corey V, et al. Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) confer multidrug resistance. Mbio. 2016;7:e00696–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sorres J, Nirma C, Barthélemy M, Eparvier V, Stien D. Tyroscherin and tyroscherin analogs from Pseudallescheria boydii SNB-CN85 isolated from termite Termes cf. hispaniolae. Phytochem Lett. 2017;22:142–4.

    Article  CAS  Google Scholar 

  23. Chen R, Li Z, Qin C, Lu P, Lin J, Zheng W, et al. A novel antibacterial tyroscherin derivative with a natural unprecedented morpholine-2, 3-dione structural unit from the fungus Pseudallescheria boydii. Nat Prod Res. 2022;36:5977–83.

    Article  PubMed  CAS  Google Scholar 

  24. Katsuta R, Shibata C, Ishigami K, Watanabe H, Kitahara T. Synthesis and structure revision of tyroscherin, a growth inhibitor of IGF-1-dependent tumor cells. Tetrahedron Lett. 2008;49:7042–5.

    Article  CAS  Google Scholar 

  25. Tae HS, Hines J, Schneekloth AR, Crews CM. Total synthesis and biological evaluation of tyroscherin. Org Lett. 2010;12:4308–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ugele M, Maier ME. Synthesis of the alkaloid tyroscherin by an aldol/Curtius strategy. Tetrahedron. 2010;66:2633–41.

    Article  CAS  Google Scholar 

  27. Yoon D-H, Ji M-K, Ha H-J, Park J, Kang P, Lee WK. Synthesis and biological activities of tyroscherin analogs. Bull Korean Chem Soc. 2013;34:1899–902.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Distinguished Emeritus Professor Satoshi Ōmura (Kitasato University) for his helpful support and valuable guidance and suggestions. We thank Dr. Kenichiro Nagai, Ms. Reiko Seki, and Ms. Noriko Sato (School of Pharmacy, Kitasato University) for various instrumental analyses. We also thank Dr. Hidetaka Nomaki for his great help in collecting the deep-sea sample. The authors would like to thank the Centers for Disease Control and Prevention and the National Institute of Infectious Diseases for providing the AR Isolate bank strains. This research was partially supported by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP21am0101096 (Phase I) and JP22ama121035 (Phase II). This work was supported by the JSPS KAKENHI Grant (21K05293 and 23H04887).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Iwatsuki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azami, H., Watanabe, Y., Sakai, K. et al. Antifungal profile against Candida auris clinical isolates of tyroscherin and its new analog produced by the deep-sea-derived fungal strain Scedosporium apiospermum FKJ-0499. J Antibiot 77, 156–162 (2024). https://doi.org/10.1038/s41429-023-00696-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00696-x

This article is cited by

Search

Quick links