Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unveiling synergism of polymyxin B with chloramphenicol derivatives against multidrug-resistant (MDR) Klebsiella pneumoniae

Abstract

Polymyxins are last-line antibiotics against multidrug-resistant Klebsiella pneumoniae but using polymyxins alone may not be effective due to emerging resistance. A previous study found that combining polymyxin B with chloramphenicol effectively kills MDR K. pneumoniae, although the bone marrow toxicity of chloramphenicol is concerning. The aim of this study is to assess the antibacterial efficacy and cytotoxicity of polymyxin B when combined with chloramphenicol and its derivatives, namely thiamphenicol and florfenicol (reported to have lesser toxicity compared to chloramphenicol). The antibacterial activity was evaluated with antimicrobial susceptibility testing using broth microdilution and time-kill assays, while the cytotoxic effect on normal bone marrow cell line, HS-5 was evaluated using the MTT assay. All bacterial isolates tested were found to be susceptible to polymyxin B, but resistant to chloramphenicol, thiamphenicol, and florfenicol when used alone. The use of polymyxin B alone showed bacterial regrowth for all isolates at 24 h. The combination of polymyxin B and florfenicol demonstrated additive and synergistic effects against all isolates (≥ 2 log10 cfu ml−1 reduction) at 4 and 24 h, respectively, while the combination of polymyxin B and thiamphenicol resulted in synergistic killing at 24 h against ATCC BAA-2146. Furthermore, the combination of polymyxin B with florfenicol had the lowest cytotoxic effect on the HS-5 cells compared to polymyxin B combination with chloramphenicol and thiamphenicol. Overall, the combination of polymyxin B with florfenicol enhanced bacterial killing against MDR K. pneumoniae and exerted minimal cytotoxic effect on HS-5 cell line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.

    Article  CAS  Google Scholar 

  2. WHO. Global priority list of antibiotic resistant bacteria to guide research discovery and development of new antibiotics 2017 Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf.

  3. xWHO. Antimicrobial resistance 2021 Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

  4. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109:309–18.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu D, Wu C, Zhang S, Zhong Y. Risk factors of ventilator-associated pneumonia in critically III patients. Front Pharmacol. 2019;10:482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monegro AF, Muppidi V, Regunath H. Hospital acquired infections. Treasure Island, FL: StatPearls Publishing; 2022.

  7. Ayobami O, Brinkwirth S, Eckmanns T, Markwart R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low-and lower-middle-income countries: a systematic review and meta-analysis. Emerg Microbes Infect. 2022;11:443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–10.

  9. Baron S, Hadjadj L, Rolain J-M, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents. 2016;48:583–91.

    Article  CAS  PubMed  Google Scholar 

  10. Chung WY, Abdul Rahim N, Mahamad Maifiah MH, Hawala Shivashekaregowda NK, Zhu Y, Wong EH. In silico genome-scale metabolic modeling and in vitro static time-kill studies of exogenous metabolites alone and with polymyxin B against Klebsiella pneumoniae. Front Pharmacol. 2022;13:880352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aggarwal R, Dewan A. Comparison of nephrotoxicity of colistin with polymyxin B administered in currently recommended doses: a prospective study. Ann Clin Microbiol Antimicrob. 2018;17:1–8.

    Article  Google Scholar 

  12. Bergen PJ, Bulman ZP, Landersdorfer CB, Smith N, Lenhard JR, Bulitta JB, et al. Optimizing polymyxin combinations against resistant Gram-negative bacteria. Infect Dis Ther. 2015;4:391–415.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abdul Rahim N, Cheah S-E, Johnson MD, Yu H, Sidjabat HE, Boyce J, et al. Synergistic killing of NDM-producing MDR Klebsiella pneumoniae by two ‘old’antibiotics—polymyxin B and chloramphenicol. J Antimicrob Chemother. 2015;70:2589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Olsson A, Wistrand-Yuen P, Nielsen EI, Friberg LE, Sandegren L, Lagerbäck P, et al. Efficacy of antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in automated time-lapse microscopy and static time-kill experiments. Antimicrob Agents Chemother. 2020;64:e02111–19.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dinos GP, Athanassopoulos CM, Missiri DA, Giannopoulou PC, Vlachogiannis IA, Papadopoulos GE, et al. Chloramphenicol derivatives as antibacterial and anticancer agents: historic problems and current solutions. Antibiotics. 2016;5:20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shukla P, Bansode F, Singh R. Chloramphenicol toxicity: a review. J Med Med Sci. 2011;2:1313–6.

    Google Scholar 

  17. Dong X, Yan X, Li M, Liu H, Li J, Wang L, et al. Ultrasensitive detection of chloramphenicol using electrochemical aptamer sensor: a mini review. Electrochem Commun. 2020;120:106835.

    Article  CAS  Google Scholar 

  18. Giguère S, Prescott JF, Dowling PM. Antimicrobial therapy in veterinary medicine. Hoboken, New Jersey, US: John Wiley & Sons; 2013.

  19. Giannopoulou PC, Missiri DA, Kournoutou GG, Sazakli E, Papadopoulos GE, Papaioannou D, et al. New chloramphenicol derivatives from the viewpoint of anticancer and antimicrobial activity. Antibiotics. 2019;8:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hussein M, Hu X, Paulin OK, Crawford S, Zhou QT, Baker M, et al. Polymyxin B combinations with FDA-approved non-antibiotic phenothiazine drugs targeting multi-drug resistance of Gram-negative pathogens. Comput Struct Biotechnol J. 2020;18:2247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens. 2021;10:165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan AU, Maryam L, Zarrilli R. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol. 2017;17:1–12.

    Article  Google Scholar 

  23. Hudson CM, Bent ZW, Meagher RJ, Williams KP. Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS ONE. 2014;9:e99209.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schjørring S, Struve C, Krogfelt KA. Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine. J Antimicrob Chemother. 2008;62:1086–93.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Elliott AG, Ganesamoorthy D, Coin L, Cooper MA, Cao MD. Complete genome sequence of Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603. Genome Announc. 2016;4:e00438–16.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rasheed JK, Anderson GJ, Yigit H, Queenan AM, Doménech-Sánchez A, Swenson JM, et al. Characterization of the extended-spectrum β-lactamase reference strain, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18. Antimicrob Agents Chemother. 2000;44:2382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adamo A, Delfino P, Gatti A, Bonato A, Takam Kamga P, Bazzoni R, et al. HS-5 and HS-27A stromal cell lines to study bone marrow mesenchymal stromal cell-mediated support to cancer development. Front Cell Dev Biol. 2020;8:584232.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ezadi F, Ardebili A, Mirnejad R. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations. J Clin Microbiol. 2019;57:e01390–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simar S, Sibley D, Ashcraft D, Pankey G. Colistin and polymyxin B minimal inhibitory concentrations determined by Etest found unreliable for Gram-negative bacilli. Ochsner J. 2017;17:239–42.

    PubMed  PubMed Central  Google Scholar 

  30. Bayot ML, Bragg BN. Antimicrobial susceptibility testing. Treasure Island, FL: StatPearls Publishing; 2022.

    Google Scholar 

  31. Rattanapanadda P, Kuo H-C, Vickroy TW, Sung C-H, Rairat T, Lin T-L, et al. In vitro and in vivo synergistic effects of florfenicol and thiamphenicol in combination against swine Actinobacillus pleuropneumoniae and Pasteurella multocida. Front Microbiol. 2019;10:2430.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cui Z-H, He H-L, Wu S-B, Dong C-L, Lu S-Y, Shan T-J, et al. Rapid screening of essential oils as substances which enhance antibiotic activity using a modified well diffusion method. Antibiotics. 2021;10:463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He S, He H, Chen Y, Chen Y, Wang W, Yu D. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii. Front Microbiol. 2015;6:507.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rao GG, Ly NS, Diep J, Forrest A, Bulitta JB, Holden PN, et al. Combinatorial pharmacodynamics of polymyxin B and tigecycline against heteroresistant Acinetobacter baumannii. Int J Antimicrob Agents. 2016;48:331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei C-F, Shien J-H, Chang S-K, Chou C-C. Florfenicol as a modulator enhancing antimicrobial activity: example using combination with thiamphenicol against Pasteurella multocida. Front Microbiol. 2016;7:389.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Silva F, Lourenço O, Queiroz JA, Domingues FC. Bacteriostatic versus bactericidal activity of ciprofloxacin in Escherichia coli assessed by flow cytometry using a novel far-red dye. J Antibiot. 2011;64:321–5.

    Article  CAS  Google Scholar 

  37. Anantharaman A, Rizvi MS, Sahal D. Synergy with rifampin and kanamycin enhances potency, kill kinetics, and selectivity of de novo-designed antimicrobial peptides. Antimicrob Agents Chemother. 2010;54:1693–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kotzialampou A, Protonotariou E, Skoura L, Sivropoulou A. Synergistic antibacterial and antibiofilm activity of the MreB inhibitor A22 hydrochloride in combination with conventional antibiotics against Pseudomonas aeruginosa and Escherichia coli clinical isolates. Int J Microbiol. 2021;2021:1–17.

  39. Tängdén T. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Upsala J Med Sci. 2014;119:149–53.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rigatto MH, Falci DR, Zavascki AP. Clinical use of polymyxin B. Polymyxin Antibiotics: From Laboratory Bench to Bedside. Cham, Switzerland: Springer; 2019. p. 197–218.

  41. Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 2007;60:1206–15.

    Article  CAS  PubMed  Google Scholar 

  42. Pizzolato-Cezar LR, Okuda-Shinagawa NM, Machini MT. Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance. Front Microbiol. 2019;10:1703.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shang D, Liu Y, Jiang F, Ji F, Wang H, Han X. Synergistic antibacterial activity of designed Trp-containing antibacterial peptides in combination with antibiotics against multidrug-resistant Staphylococcus epidermidis. Front Microbiol. 2019;10:2719.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wistrand-Yuen P, Olsson A, Skarp K-P, Friberg L, Nielsen EI, Lagerbäck P, et al. Evaluation of polymyxin B in combination with 13 other antibiotics against carbapenemase-producing Klebsiella pneumoniae in time-lapse microscopy and time-kill experiments. Clin Microbiol Infect. 2020;26:1214–21.

    Article  CAS  PubMed  Google Scholar 

  45. Ayoub Moubareck C. Polymyxins and bacterial membranes: a review of antibacterial activity and mechanisms of resistance. Membranes. 2020;10:181.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: mode of action, resistance emergence, and potential solutions. J Biosci. 2021;46:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nang SC, Azad MA, Velkov T, Zhou QT, Li J. Rescuing the last-line polymyxins: achievements and challenges. Pharmacol Rev. 2021;73:679–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. White DG, Hudson C, Maurer JJ, Ayers S, Zhao S, Lee MD, et al. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J Clin Microbiol. 2000;38:4593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Somogyi Z, Mag P, Simon R, Kerek Á, Szabó P, Albert E, et al. Pharmacokinetics and pharmacodynamics of florfenicol in plasma and synovial fluid of pigs at a dose of 30 mg/kgbw following intramuscular administration. Antibiotics. 2023;12:758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brown P, Dawson MJ. A perspective on the next generation of antibacterial agents derived by manipulation of natural products. Prog Med Chem. 2015;54:135–84.

    Article  PubMed  Google Scholar 

  51. Lashev L, Haritova A. Comparative allometric analysis of pharmacokinetics of florfenicol and thiamphenicol. Bulgarian J Vet Med. 2006;9:115–22.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Faculty Research Grant (Geran Penyelidikan Fakulti), Faculty of Pharmacy, Universiti Malaya (GPF001B-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nusaibah Abdul Rahim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idris, N., Leong, K.H., Wong, E.H. et al. Unveiling synergism of polymyxin B with chloramphenicol derivatives against multidrug-resistant (MDR) Klebsiella pneumoniae. J Antibiot 76, 711–719 (2023). https://doi.org/10.1038/s41429-023-00659-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00659-2

Search

Quick links