Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aspects for development of novel antibacterial medicines using a vitamin D3 decomposition product in Helicobacter pylori infection

Abstract

A previous study by our group demonstrated that a vitamin D3 decomposition product (VDP1) acts as the selective bactericidal substance on Helicobacter pylori. VDP1 is an indene compound modified with a carbonyl and an alkyl. The alkyl of VDP1 turned out to be a mandatory structure to exert effective bactericidal action on H. pylori. Meanwhile, it still remains to be clarified as to how influence the alteration of the carbonyl in VDP1 has on the anti-H. pylori activity. In this study, we synthesized novel VDP1 derivatives that replaced the carbonyl of VDP1 by various functional groups and investigated the antibacterial action of the VDP1 derivatives on H. pylori. VDP1 derivatives retaining either a hydroxy (VD3-1) or an acetic ester (VD3-3) exhibited more effective bactericidal action to H. pylori than VDP1. The replacement of the carbonyl of VDP1 by either an allyl acetate (VD3-2) or an acrylic acid (VD3-5) provided almost no change to the anti-H. pylori activity. Apart from this, an isomer of VDP1 (VD3-4) slightly improved anti-H. pylori activity of VDP1. Meanwhile, the replacement of the carbonyl of VDP1 by a methyl acrylate (VD3-6) attenuated the anti-H. pylori activity. As with VDP1, its derivatives also were suggested to exert the anti-H. pylori action through the interaction with myristic acid side chains of dimyristoyl-phosphatidylethanolamine, a characteristic membrane lipid constituent of this pathogen. These results indicate that it is capable of developing specific antibacterial medicines for H. pylori targeting the biomembranal dimyristoyl-phosphatidylethanolamine using VDP1 as the fundamental structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marshall B, Warren JR. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet .1983;1:1273–4.

    PubMed  Google Scholar 

  2. Graham DY. Helicobacter pylori: Its epidemiology and its role in duodenal ulcer disease. J Gastroenterol Hep. 1991;6:105–13.

    Article  CAS  Google Scholar 

  3. Forman D. The Eurogast study group. An international association between Helicobacter pylori infection and gastric cancer. Lancet .1993;341:1359–63.

    Article  Google Scholar 

  4. Wotherspoon AC, Oriz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet .1999;338:1175–6.

    Article  Google Scholar 

  5. Uemura N, Okamoto S, Yamamoto S, Matsumura M, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. 2N Engl J Med. 2001;345:829–32.

    Google Scholar 

  6. Peek JRM, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinoma. Nat Rev Cancer. 2002;2:28–37.

    Article  CAS  PubMed  Google Scholar 

  7. Stolte M, Bayerdörffer E, Morgner A, Alpen B, Wündisch T, Thiede C, Neubauer A. Helicobacter and gastric MALT lymphoma. Gut .2002;50:III19–24.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moss SF. The clinical evidence linking Helicobacter pylori to gastric cancer. Cell Mol Gastroenterol Hepatol. 2017;3:183–91.

    Article  PubMed  Google Scholar 

  9. Francesco VD, Giorgio F, Hassan C, Manes G, Vannella L, Panella C, Ierardi E, Zullo A. Worldwide H. pylori antibiotic resistance: a systematic review. J Gastrointest Liv Dis 2010;19:409–14.

    Google Scholar 

  10. Trifan A, Girleanu I, Cojocariu C, Sfarti C, Singeap AM, Dorobat C, Grigore L, Stanciu C. Pseudomembranous colitis associated with a triple therapy for Helicobacter pylori eradication. World J Gastroenterol. 2013;19:7476–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hosoda K, Shimomura H, Wanibuchi K, Masui H, Amgalanbaatar A, Hayashi S, Takahashi T, Hirai Y. Identification and characterization of a vitamin D3 decomposition product bactericidal against Helicobacter pylori. Sci Rep. 2015;5:8860. https://doi.org/10.1038/srep08860.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wanibuchi K, Hosoda K, Ihara M, Tajiri K, Sakai Y, Masui H, Takahashi T, Hirai Y, Shimomura H. Indene compounds synthetically derived from vitamin D have selective antibacterial action on Helicobacter pylori. Lipids .2018;53:393–401.

    Article  CAS  PubMed  Google Scholar 

  13. Wanibuchi K, Takezawa M, Hosoda K, Amgalanbaatar A, Tajiri K, Koizumi Y, Niitsu S, Masui H, Sakai Y, Shoji M, Takahashi T, Hirai Y, Shimomura H. Antibacterial effect of indene on Helicobacter pylori correlates with specific interaction between its compound and dimyristoyl-phosphatidylethanolamine. Chem. Phys. Lipids. 2020. https://doi.org/10.1016/j.chemphyslip.2020.104871.

  14. Shimomura H, Wanibuchi K, Hosoda K, Amgalanbaatar A, Masui H, Takahashi T, Hirai Y. Unique responses of Helicobacter pylori to exogenous hydrophobic compounds. Chem Phys Lipids. 2020. https://doi.org/10.1016/j.chemphyslip.2020.104908

  15. Shimomura H, Hosoda K, Hayashi S, Yokota K, Oguma K, Hirai Y. Steroids mediate resistance to the bactericidal effect of phosphatidylcholines against Helicobacter pylori. FEMS Microbiol Lett. 2009;301:84–94.

    Article  CAS  PubMed  Google Scholar 

  16. Hosoda K, Shimomura H, Hayashi S, Yokota K, Hirai Y. Steroid hormones as bactericidal agents to Helicobacter pylori. FEMS Microbiol Lett. 2011;318:68–75.

    Article  CAS  PubMed  Google Scholar 

  17. McGee DJ, George AE, Trainor EA, Horton KE, Hildebrandt E, Testerman TL. Cholesterol enhances Helicobacter pylori resistance to antibiotics and LL-37. Agents Chemother. 2011;55:2897–904.

    Article  CAS  Google Scholar 

  18. Trainor EA, Horton KE, Savage PE, Testerman TL, McGee DJ. Role of the HefC efflux pump in Helicobacter pylori cholesterol-dependent resistance to ceragenins and bile salts. Infect Immun. 2011;79:88–97.

    Article  CAS  PubMed  Google Scholar 

  19. Correia M, Casal S, Vinagre J, Seruca R, Figueiredo C, Touati E, Machado JC. Helicobacter pylori’s cholesterol uptake impacts resistance to docosahexaenoic acid. Int J Med Microbiol. 2014;304:314–20.

    Article  CAS  PubMed  Google Scholar 

  20. Amgalanbaatar A, Shimomura H, Hosoda K, Hayashi S, Yokota K, Hirai Y. Antibacterial activity of a novel synthetic progesterone species carrying a linoleic acid molecule against Helicobacter pylori and the hormonal effect of its steroid on a murine macrophage-like cell line. J Steroid Biochem Mol Biol. 2014;140:17–25.

    Article  CAS  PubMed  Google Scholar 

  21. Hirai Y, Haque M, Yoshida T, Yokota K, Yasuda T, Oguma K. Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J Bacteriol. 1995;177:5327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lebrun AH, Wunder C, Hildebrand J, Churin Y, Zähringer U, Lindner B, Meyer TF, Heinz E, Warnecke D. Cloning of a cholesterol-α-glucosyltransferase from Helicobacter pylori. J Biol Chem. 2006;281:27765–72.

    Article  CAS  PubMed  Google Scholar 

  23. Wunder C, Churin Y, Winau F, Warnecke D, Vieth M, Lindner B, Zähringer U, Mollenkopf HJ, Heinz E, Meyer TF. Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nat Med. 2006;12:1030–8.

    Article  CAS  PubMed  Google Scholar 

  24. Lee H, Wang P, Hoshino H, Ito Y, Kobayashi M, Nakayama J, Seeberger PH, Fukuda M. α1,4-GlcNAc-capped mucin-type O-glycan inhibits cholesterol α-glucosyltransferase from Helicobacter pylori and suppress. H pylori growth Glycobiol. 2008;18:549–58.

    Article  CAS  Google Scholar 

  25. Hoshino H, Tsuchida A, Kametani K, Mori M, Nishizawa T, Suzuki T, Nakamura H, Lee H, Ito Y, Kobayashi M, Masumoto J, Fujita M, Fukuda M, Nakayama J. Membrane-associated activation of cholesterol α-glucosyltransferase, an enzyme responsible for biosynthesis of cholesteryl-α-D-glucopyranoside in Helicobacter pylori critical for its survival. J Histochem Cytochem. 2011;59:98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jan HM, Chen YC, Shih YY, Huang YC, Tu Z, Ingle AB, Liu SW, Wu MS, G-Hague J, Mong KKT, Chen YR, Lin CH. Metabolic labeling of cholesteryl glucosides in Helicobacter pylori reveals how the uptake of human lipids enhances bacterial virulence. Chem Sci 2016;7:6208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beining PR, Huff E, Prescott B, Theodore TS. Characterization of the lipids of mesosomal vesicles and plasma membranes from Staphylococcus aureus. J Bacteriol 1975;121:137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu X, Liu T, Zhu F, Khosla C. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. PNAS 2011;108:18643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang W, Jia J, Edwards P, Dehesh K, Schneider G, Lindqvist Y. Crystal structure of b-ketoacyl-acyl carrier protein synthase II from E. coli reveals the molecular architecture of condensing enzymes. EMBO J. 1998;17:1183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelly DJ, Hughes NJ. In: Mobley HLT, Mendz GL., Hazell SL. (Ed.), Chapter 12 the citric acid cycle and fatty acid biosynthesis. Helicobacter pylori: Physiology and Genetics. ASM Press, Washington (DC); 2001.

Download references

Funding

This work was supported by a Grant-in-Aid from Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP), JSPS KAKENHI (Grant Number 23K04952), and JKA promotion funds from KEIRIN RACE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Shimomura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanibuchi, K., Hosoda, K., Amgalanbaatar, A. et al. Aspects for development of novel antibacterial medicines using a vitamin D3 decomposition product in Helicobacter pylori infection. J Antibiot 76, 665–672 (2023). https://doi.org/10.1038/s41429-023-00651-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00651-w

Search

Quick links