Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of soil supplemented with pig manure on the abundance of antibiotic resistant bacteria and their associated genes

Abstract

This study was conducted to evaluate the abundance of antibiotic resistant bacteria and their resistance genes from agriculture soil supplemented with pig manure. Uncultivable soil sample was supplemented with pig manure samples under microcosm experimental conditions and plated on Luria-Bertani (LB) agar incorporated with commercial antibiotics. The supplementation of soil with 15% pig manure resulted in the highest increase in the population of antibiotic resistant bacteria (ARB)/multiple antibiotic resistant bacteria (MARB). Seven genera that included Pseudomonas, Escherichia, Providencia, Salmonella, Bacillus, Alcaligenes and Paenalcaligenes were the cultivable ARB identified. A total of ten antibiotic resistant bacteria genes (ARGs) frequently used in clinical or veterinary settings and two mobile genetic elements (MGEs) (Class 1 and Class 2 integrons) were detected. Eight heavy metal, copper, cadmium, chromium, manganese, lead, zinc, iron, and cobalt were found in all of the manure samples at different concentrations. Tetracycline resistance genes were widely distributed with prevalence of 50%, while aminoglycoside and quinolone-resistance gene had 16% and 13%, respectively. Eighteen ARB isolates carried more than two ARGs in their genome. Class 1 integron was detected among all the 18 ARB with prevalence of 90–100%, while Class 2 integron was detected among 11 ARB. The two classes of integron were found among 10 ARB. Undoubtedly, pig manure collected from farms in Akure metropolis are rich in ARB and their abundance might play a vital role in the dissemination of resistance genes among clinically-relevant pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci. 2014;111:15202–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marti R, Scott A, Tien YC, Murray R, Sabourin L, Zhang Y, et al. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Appl Environ Microbiol. 2013;79:5701–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci. 2013;110:3435–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang Q, Wang R, Ren S, Szoboszlay M, Moe LA. Practical survey on antibiotic-resistant bacterial communities in livestock manure and manure-amended soil. J Environ Sci Health B 2016;51:14–23.

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Zheng L, Cai Q, Xu Y, Xie Z, Liu J, et al. Simultaneous reduction of antibiotics and antibiotic resistance genes in pig manure using a composting process with a novel microbial agent. Ecotoxicol Environ Saf. 2021;208:111724.

    Article  CAS  PubMed  Google Scholar 

  6. Wang FH, Qiao M, Chen Z, Su JQ, Zhu YG. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J Hazard Mater 2015;299:215221.

    Article  Google Scholar 

  7. Sommer MO. Barriers to the spread of resistance. Nature. 2014;509:567–68.

    Article  CAS  PubMed  Google Scholar 

  8. Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol. 2018;56:e01934–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Li J, Zhang H, Shi W, Liu Y. Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China. Front Microbiol. 2019;10:1916.

    Article  PubMed  PubMed Central  Google Scholar 

  10. APHA. Standards Methods for the Examination of Water and Wastewater. 20th edition. Washington, D.C: American Public Health Association; 1998.

  11. Allen SE, Grimshaw HM, Parkinson JA, Quarmby C. Chemical analysis of ecological materials. Oxford: Blackwell Scientific Publications; 1974.

  12. Yang Q, Tian T, Niu T, Wang P. Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Environ Pollut. 2017;229:188–98.

    Article  CAS  PubMed  Google Scholar 

  13. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, Morgan DR. Manual of Clinical Microbiology (6th edn). Trends Microbiol. 1995;3:449–49.

    Google Scholar 

  14. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York: John Wiley & Sons; 1991, p. 115–75.

  15. Binh CT, Heuer H, Kaupenjohann M, Smalla K. Diverse aadA gene cassettes on class 1 integrons introduced into soil via spread manure. Res Microbiol. 2009;160:427–33.

    Article  CAS  PubMed  Google Scholar 

  16. Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol. 2011;14:236–43.

    Article  CAS  PubMed  Google Scholar 

  17. Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect. 2013;121:878–85.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marti R, Tien YC, Murray R, Scott A, Sabourin L, Topp E. Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure? Appl Environ Microbiol. 2014;80:3258–265.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stockwell VO, Duffy B. Use of antibiotics in plant agriculture. Rev Scientifique Et Tech-Off Int Des Epizooties. 2012;31:199–210.

    Article  CAS  Google Scholar 

  20. Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb Ecol. 2012;64:450–60.

    Article  PubMed  Google Scholar 

  21. Sun HY, Deng SP, Raun WR. Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Appl Environ Microbiol. 2004;70:5868–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng W, Chen H, Su C, Yan S. Abundance and persistence of antibiotic resistance genes in livestock farms: A comprehensive investigation in eastern China. Enviro Int. 2013;61:1–7.

    Article  CAS  Google Scholar 

  23. Wei B, Yu J, Cao Z, Meng M, Yang L, Chen Q. The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. Int J Environ Res Public Health. 2020;17:5359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lima T, Domingues S, Da Silva GJ. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet Sci. 2020;7:110.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stefanowicz AM, Kapusta P, Zubek S, Stanek M, Woch MW. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn-Pb mining sites. Chemosphere 2020;240:124922.

    Article  CAS  PubMed  Google Scholar 

  26. Rogers SD, Bhave MR, Mercer JF, Camakaris J, Lee BT. Cloning and characterization of cutE, a gene involved in copper transport in Escherichia coli. J Bact. 1991;173:6742–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L, Barua S, et al. Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J. 2010;4:660–72.

    Article  CAS  PubMed  Google Scholar 

  28. Azarbad H, Niklińska M, Laskowski R, van Straalen NM, van Gestel CA, Zhou J, et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol Ecol. 2015;91:1–11.

    Article  PubMed  Google Scholar 

  29. Lal S, Ratna S, Said OB, Kumar R. Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environ Technol Innov. 2018;10:243–63.

    Article  Google Scholar 

  30. Duan M, Zhang Y, Zhou B, Wang Q, Gu J, Liu G, et al. Changes in antibiotic resistance genes and mobile genetic elements during cattle manure composting after inoculation with Bacillus subtilis. Bioresour Technol. 2019;292:122011.

    Article  CAS  PubMed  Google Scholar 

  31. Peng S, Li H, Song D, Lin X, Wang Y. Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting. Bioresour Technol. 2018;263:393–401.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao X, Wei Y, Fan Y, Zhang F, Tan W, He X, et al. Roles of bacterial community in the transformation of dissolved organic matter for the stability and safety of material during sludge composting. Bioresour Technol. 2018;267:378–85.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu L, Zhao Y, Zhang W, Zhou H, Chen X, Li Y, et al. Roles of bacterial community in the transformation of organic nitrogen toward enhanced bioavailability during composting with different wastes. Bioresour Technol. 2019;285:121326.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Lu T, Wang Z, Wang Y, Zhong H, Shen P, et al. Effects of magnetite on anaerobic digestion of swine manure: Attention to methane production and fate of antibiotic resistance genes. Bioresour Technol. 2019;291:121847.

    Article  CAS  PubMed  Google Scholar 

  35. Chen M, Xu J, Dai R, Wu Z, Liu M, Wang Z. Development of a moving-bed electrochemical membrane bioreactor to enhance removal of low-concentration antibiotic from wastewater. Bioresour Technol. 2019;293:122022.

    Article  CAS  PubMed  Google Scholar 

  36. Bahar G, Eraç BA, Mert A, Gülay Z. PER-1 production in a urinary isolate of Providencia rettgeri. J Chemother. 2004;16:343–46.

    Article  CAS  PubMed  Google Scholar 

  37. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. CIM. 2012;18:268–81.

    CAS  Google Scholar 

  38. Bhavsar S, Krilov L. Escherichia coli Infections. Pediatr Rev. 2015;36:167–71.

    Article  Google Scholar 

  39. Wu N, Qiao M, Zhang B, Cheng WD, Zhu YG. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environ Sci Technol. 2010;44:6933–939.

    Article  CAS  PubMed  Google Scholar 

  40. Hu T, Wang X, Zhen L, Gu J, Zhang K, Wang Q, et al. Effects of inoculation with lignocellulose-degrading microorganisms on antibiotic resistance genes and the bacterial community during co-composting of swine manure with spent mushroom substrate. Environ Pollut. 2019;252:110–8.

    Article  CAS  PubMed  Google Scholar 

  41. Roberts MC. Mechanisms of bacterial antibiotic resistance and lessons learned from environmental tetracycline-resistant bacteria. Antimicrobial Res Environ. 2011;252:93–121.

  42. Zhang M, He LY, Liu YS, Zhao JL, Liu WR, Zhang JN, et al. Fate of veterinary antibiotics during animal manure composting. Sci Total Environ. 2019;650:1363–70.

    Article  CAS  PubMed  Google Scholar 

  43. Byrne-Bailey KG, Gaze WH, Zhang L, Kay P, Boxall A, Hawkey PM, et al. Integron prevalence and diversity in manured soil. Appl Environ Microbiol. 2011;77:684–87.

    Article  CAS  PubMed  Google Scholar 

  44. Mathew AG, Liamthong S, Lin J, Hong Y. Evidence of class 1 integron transfer between Escherichia coli and Salmonella spp. on livestock farms. Foodborne Pathog Dis. 2009;6:959–64.

    Article  PubMed  Google Scholar 

  45. Tian Z, Zhang Y, Yu B, Yang M. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic. Water Res. 2016;98:261–69.

    Article  CAS  PubMed  Google Scholar 

  46. Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev. 2011;35:790–819.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge provision of laboratory space and equipment, and technical support by the technical arms of the Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oladipo Oladiti Olaniyi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41429_2023_633_MOESM1_ESM.docx

Supplementary Materials: Impact of soil amended with pig manure on the abundance of antibiotic resistant bacteria and their associated genes

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinduro, A., Onyekwelu, C.I., Oyelumade, T. et al. Impact of soil supplemented with pig manure on the abundance of antibiotic resistant bacteria and their associated genes. J Antibiot 76, 548–562 (2023). https://doi.org/10.1038/s41429-023-00633-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00633-y

Search

Quick links