Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Antibacterial effect of rose bengal against colistin-resistant gram-negative bacteria

Abstract

Increasing drug resistance in Gram-negative bacteria presents significant health problems worldwide. Despite notable advances in the development of a new generation of β-lactams, aminoglycosides, and fluoroquinolones, it remains challenging to treat multi-drug resistant Gram-negative bacterial infections. Colistin (polymyxin E) is one of the most efficacious antibiotics for the treatment of multiple drug-resistant Gram-negative bacteria and has been used clinically as a last-resort option. However, the rapid spread of the transferable gene, mcr-1 which confers colistin resistance by encoding a phosphoethanolamine transferase that modifies lipid A of the bacterial membrane, threatens the efficacy of colistin for the treatment of drug-resistant bacterial infections. Colistin-resistant strains of Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae often reduce their susceptibility to other anti-Gram-negative bacterial agents. Thus, drugs effective against colistin-resistant strains or methods to prevent the acquisition of colistin-resistance during treatment are urgently needed. To perform cell-based screenings of the collected small molecules, we have generated colistin-resistant strains of E. coli, A. baumannii, K. pneumoniae, P. aeruginosa, and S. enterica Typhimurium. In-house MIC assay screenings, we have identified that rose bengal (4,5,6,7-tetrachloro-2’,4’,5’,7’-tetraiodofluorescein) is the only molecule that displays unique bactericidal activity against these strains at low concentrations under illumination conditions. This article reports the antibacterial activity of a pharmaceutical-grade rose bengal against colistin-resistant Gram-negative bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Boucher HW, Talbot GH, Benjamin DK, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D. New drugs for Gram-negative bacilli. Clin Infect Dis. 2013;56:1685–93.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bassetti M, Peghin M, Vena A, Giacobbe DR. Treatment of infections due to MDR Gram-negative bacteria. Front Med (Lausanne). 2019;16:74.

    Article  Google Scholar 

  3. Bassetti M, Vena A, Giacobbe DR, Castaldo N. Management of infections caused by multidrug-resistant Gram-negative pathogens: Recent advances and future directions. Arch Med Res. 2021;52:817–27.

    Article  CAS  PubMed  Google Scholar 

  4. Oliveira, J, Reygaert, WC Gram-negative bacteria. 2022 Oct 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. PMID: 30855801.

  5. Loho T, Dharmayanti A. Colistin: an antibiotic and its role in multiresistant Gram-negative infections. Acta Med Indones. 2015;47:157–68.

    PubMed  Google Scholar 

  6. Gharaibeh MH, Shatnawi SQ. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: a review. Vet World. 2019;12:1735–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pike M, Saltiel E. Colistin- and polymyxin-induced nephrotoxicity: focus on literature utilizing the RIFLE classification scheme of acute kidney injury. J Pharm Pract. 2014;27:554–61.

    Article  PubMed  Google Scholar 

  8. Ordooei Javan A, Shokouhi S, Sahraei Z. A review on colistin nephrotoxicity. Eur J Clin Pharmacol. 2015;71:801–10.

    Article  CAS  PubMed  Google Scholar 

  9. Jafari F, Elyasi S. Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data. Expert Rev Clin Pharmacol. 2021;14:1113–31.

    Article  CAS  PubMed  Google Scholar 

  10. Eljaaly K, Bidell MR, Gandhi RG, Alshehri S, Enani MA, Al-Jedai A, Lee TC. Colistin nephrotoxicity: Meta-analysis of randomized controlled trials. Open Forum Infect Dis. 2021;8:1–6.

    Article  CAS  Google Scholar 

  11. Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther. 2021;10:917–34.

    Article  Google Scholar 

  12. Qadi M, Alhato S, Khayyat R, Elmanama AA. Colistin resistance among Enterobacteriaceae isolated from clinical samples in Gaza Strip. Can J Infect Dis Med Microbiol. 2021;20:6634684.

    Google Scholar 

  13. Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, Asgharzadeh M, Yousefi B, Kafil HS. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 2019;24:965–75.

    Article  Google Scholar 

  14. Zafer MM, El-Mahallawy HA, Abdulhak A, Amin MA, Al‑Agamy MH, Radwan HH. Emergence of colistin resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli strains isolated from cancer patients. Ann Clin Microbiol Antimicrob. 2019;18:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Azimi L, Lari AR. Colistin-resistant Pseudomonas aeruginosa clinical strains with defective biofilm formation. GMS Hyg Infect Control. 2019;10:14:Doc12.

    Google Scholar 

  16. Bialvaei AZ, Kafil HS. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin. 2015;31:707–21.

    Article  CAS  PubMed  Google Scholar 

  17. Qureshi ZA, Hittle LE, O’Hara JA, Rivera JI, Syed A, Shields RK, Pasculle AW, Ernst RK, Doi Y. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis. 2015;60:1295–303.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Humphrey M, Larrouy-Maumus GJ, Furniss RCD, Mavridou DAI, Sabnis A, Edwards AM. Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Microbiology. 2021;167:1–9.

    Article  Google Scholar 

  19. Lima T, Domingues S, Da Silva GJ. Plasmid-mediated colistin resistance in Salmonella enterica: a review. Microorganisms. 2019;19:55.

    Article  Google Scholar 

  20. Janssen AB, Doorduijn DJ, Mills G, Rogers MRC, Bonten MJM, Rooijakkers SHM, Willems RJL, Bengoechea JA, van Schaik W. Evolution of colistin resistance in the Klebsiella pneumoniae complex follows multiple evolutionary trajectories with variable effects on fitness and virulence characteristics. Antimicrob Agents Chemother. 2020;16:e01958–20.

    Google Scholar 

  21. Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current update on intrinsic and acquired colistin resistance mechanisms in bacteria. Front Med 2021;8:1–19.

    Article  Google Scholar 

  22. Napier BA, Burd EM, Satola SW, Cagle SM, Ray SM, McGann P, Pohl J, Lesho EP, Weiss DS. Clinical use of colistin induces cross-resistance to host antimicrobials in Acinetobacter baumannii. mBio. 2013;21:e00021–13.

    Google Scholar 

  23. Dobias J, Poirel L, Nordmann P. Cross-resistance to human cationic antimicrobial peptides and to polymyxins mediated by the plasmid-encoded MCR-1? Clin Microbiol Infect. 2017;23:676.e1–676.e5.

    Article  CAS  PubMed  Google Scholar 

  24. Hirsch HA, McCarthy CG, Finland M, Polymyxin B. and colistin; activity, resistance, and cross-resistance in vitro. Proc Soc Exp Biol Med 1960;103:338–42.

    Article  CAS  PubMed  Google Scholar 

  25. Livermore DM, Mushtaq S, Warner M. Selectivity of ertapenem for Pseudomonas aeruginosa mutants cross-resistant to other carbapenems. J Antimicrob Chemother. 2005;55:306–11.

    Article  CAS  PubMed  Google Scholar 

  26. Petrosillo N, Taglietti F, Granata G. Treatment options for colistin resistant Klebsiella pneumoniae: Present and future. J Clin Med. 2019;28:934.

    Article  Google Scholar 

  27. Jana B, Cain AK, Doerrler WT, Boinett CJ, Fookes MC, Parkhill J, Guardabassi L. The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Sci Rep. 2017;15:42483.

    Article  Google Scholar 

  28. Boucher HW, Talbot GH, Benjamin DK, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D. New drugs for Gram-negative bacilli. Clin Infect Dis 2013;56:1685–93.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Meyer AL. Prospects and challenges of developing new agents for tough Gram-negatives. Curr Opin Pharmacol. 2005;5:490–4.

    Article  CAS  PubMed  Google Scholar 

  30. El-Gawad El-Sayed Ahmed MA, Zhong L-L, Shen C, Yang Y, Doi Y, Tian G-B. Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect. 2020;9:868–85.

    Article  Google Scholar 

  31. Aris P, Robatjazi S, Nikkhahi F, Marashi SMA. Molecular mechanisms and prevalence of colistin resistance of Klebsiella pneumoniae in the Middle East region: A review over the last 5 years. J Glob Antimicrob Resist. 2020;22:625–30.

    Article  PubMed  Google Scholar 

  32. Zhang Q, Chen S, Liu X, Lin W, Zhu K. Equisetin restores colistin sensitivity against multi-drug resistant Gram-negative bacteria. Antibiotics (Basel). 2021;18:1263.

    Article  Google Scholar 

  33. Elio C, Erica R, Marcello M. Infections due to antibiotic-resistant Gram-negative bacteria in pediatrics: Possible management strategies. Pediatr Infect Dis J. 2022;41:e283–e285.

    Article  Google Scholar 

  34. Lelovic N, Mitachi K, Yang J, Lemieux MR, Ji Y, Kurosu M. Application of Mycobacterium smegmatis as a surrogate to evaluate drug leads against Mycobacterium tuberculosis. J Antibiotics. 2020;73:780–9.

    Article  CAS  Google Scholar 

  35. Kurosu M, Mitachi K, Yang J, Pershing EV, Horowitz BD, Wachter EA, Lacey JW 3rd, Ji Y, Rodrigues DJ. Antibacterial activity of pharmaceutical-grade rose bengal: An application of a synthetic dye in antibacterial therapies. Molecules. 2022;27:322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patel SP, Carter BW. Percutaneous hepatic injection of rose bengal disodium (PV-10) in metastatic uveal melanoma. J Clin Oncol. 2020;38:3143.

    Article  Google Scholar 

  37. Nakonieczna J, Wolnikowska K. Rose bengal-mediated photoinactivation of multidrug resistant Pseudomonas aeruginosa is enhanced in the presence of antimicrobial peptides. Front Microbiol. 2018;9:1949.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhou K, Cattoir V, Xiao Y. Intrinsic colistin resistance. Lancet Infect Dis. 2016;16:1227–8.

    Article  PubMed  Google Scholar 

  39. Li X, Gu Y, Dong H, Wang W, Dong C. Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane. Sci Rep. 2015;7:11883.

    Article  Google Scholar 

  40. Sabnis A, Hagart KL, Klöckner A, Becce M, Evans LE, Furniss RCD, Mavridou DA, Murphy R, Stevens MM, Davies JC, Larrouy-Maumus GJ, Clarke TB, Edwards AM. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. Elife. 2021;6:e65836.

    Article  Google Scholar 

  41. Freinkman E, Chng S-S, Kahne D. The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. PNAS. 2010;108:2486–91.

    Article  Google Scholar 

  42. Wachter E, Dees C, Harkins J, Scott T, Petersen M, Rush RE, Cada A. Topical rose bengal: pre-clinical evaluation of pharmacokinetics and safety. Lasers Surg Med. 2003;32:101–10.

    Article  PubMed  Google Scholar 

  43. Lee YC, Park CK, Kim MS, Kim JH. In vitro study for staining and toxicity of rose bengal on cultured bovine corneal endothelial cells. Cornea. 1996;15:376–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We MK and KM are grateful to Provectus Biopharmaceuticals for financial support. M. K. thanks UTRF (University of Tennessee Health Science Center) for generous financial support (Innovation award R079700292). The wild-type bacterial strains used here were obtained through BEI Resources, NIAID, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Kurosu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurosu, M., Mitachi, K., Pershing, E.V. et al. Antibacterial effect of rose bengal against colistin-resistant gram-negative bacteria. J Antibiot 76, 416–424 (2023). https://doi.org/10.1038/s41429-023-00622-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00622-1

This article is cited by

Search

Quick links