Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A new antibiotic from the culture broth of Dentipellis fragilis

Abstract

During the search for natural antibiotics from fungal metabolites, a new cyathane diterpenoid, fragilicine A (1), and three known cyathane diterpenoids, erinacines I, A, and B (24) were isolated from the culture broth of Dentipellis fragilis. Chemical structures of 14 were determined by analyses of 1D- and 2D-NMR and MS data and by comparisons with data of those reported in the literature. These isolated compounds were assessed for their antimicrobial activities against Bacillus subtilis, B. atrophaeus, B. cereus, Listeria monocytogenes, Fusarium oxysporum, Diaporthe sp., and Rhizoctonia solani. These compounds showed weak antimicrobial activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Han J, Chen Y, Bao L, Yang X, Liu D, Li S, et al. Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia. 2013;84:22–31.

    Article  CAS  PubMed  Google Scholar 

  2. Wei J, Guo WH, Cao CY, Kou RW, Xu YZ, Górecki M, et al. Polyoxygenated cyathane diterpenoids from the mushroom Cyathus africanus, and their neurotrophic and anti-neuroinflammatory activities. Sci Rep. 2018;8:2175.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yin X, Wei J, Wang WW, Gao YQ, Stadler M, Kou RW, et al. New cyathane diterpenoids with neurotrophic and anti-neuroinflammatory activity from the bird’s nest fungus Cyathus africanus. Fitoterapia. 2019;134:201–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kou RW, Du ST, Li YX, Yan XT, Zhang Q, Cao CY, et al. Cyathane diterpenoids and drimane sesquiterpenoids with neurotrophic activity from cultures of the fungus Cyathus africanus. J Antibiot. 2019;72:15–21.

    Article  CAS  Google Scholar 

  5. Han JJ, Zhang L, Xu JK, Bao L, Zhao F, Chen YH, et al. Three new cyathane diterpenoids from the medicinal fungus Cyathus africanus. J Asian Nat Prod Res. 2015;17:541–9.

    Article  CAS  PubMed  Google Scholar 

  6. Bai R, Zhang CC, Yin X, Wei J, Gao JM, Striatoids A-F. Cyathane Diterpenoids with Neurotrophic Activity from Cultures of the Fungus Cyathus striatus. J Nat Prod. 2015;78:783–8.

    Article  CAS  PubMed  Google Scholar 

  7. Nitthithanasilp S, Intaraudom C, Boonyuen N, Suvannakad R, Pittayakhajonwut P. Antimicrobial activity of cyathane derivatives from Cyathus subglobisporus BCC44381. Tetrahedron. 2018;74:6907–16.

    Article  CAS  Google Scholar 

  8. Chen L, Yao JN, Chen HP, Zhao ZZ, Li ZH, Feng T, et al. Hericinoids A‒C, cyathane diterpenoids from culture of mushroom Hericium erinaceus. Phytochem Lett. 2018;27:94–100.

    Article  CAS  Google Scholar 

  9. Zhang Y, Liu L, Bao L, Yang Y, Ma K, Liu H. Three new cyathane diterpenes with neurotrophic activity from the liquid cultures of Hericium erinaceus. J Antibiot. 2018;71:818–21.

    Article  CAS  Google Scholar 

  10. Lee EW, Shizuki K, Hosokawa S, Suzuki M, Suganuma H, Inakuma T, et al. Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum. Biosci Biotechnol Biochem. 2000;64:2402–5.

    Article  CAS  PubMed  Google Scholar 

  11. Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, et al. Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett. 1994;35:1569–72.

    Article  CAS  Google Scholar 

  12. Kenmoku H, Shimai T, Toyomasu T, Kato N, Sassa T. Erinacine Q, a new erinacine from Hericium erinaceum, and its biosynthetic route to erinacine C in the basidiomycete. Biosci Biotechnol Biochem. 2002;66:571–5.

    Article  CAS  PubMed  Google Scholar 

  13. Kamo T, Imura Y, Hagio T, Makabe H, Shibata H, Hirota M. Anti-inflammatory cyathane diterpenoids from Sarcodon scabrosus. Biosci Biotechnol Biochem. 2004;68:1362–5.

    Article  CAS  PubMed  Google Scholar 

  14. Marcotullio MC, Pagiott R, Maltese F, Obara Y, Hoshino T, Nakahata N, et al. Neurite outgrowth activity of cyathane diterpenes from Sarcodon cyrneus, cyrneines A and B. Planta Med. 2006;72:819–23.

    Article  CAS  PubMed  Google Scholar 

  15. Marcotullio MC, Pagiotti R, Maltese F, Oball-Mond Mwankie GN, Hoshino T, Obara Y, et al. Cyathane diterpenes from Sarcodon cyrneus and evaluation of their activities of neuritegenesis and nerve growth factor production. Bioorg Med Chem. 2007;15:2878–82.

    Article  CAS  PubMed  Google Scholar 

  16. Shiono Y, Hiramatsu F, Murayama T, Koseki T, Funakoshi T. Two cyathane-type diterpenoids from the liquid culture of Strobilurus tenacellus. Chem Biodivers. 2008;5:1811–6.

    Article  CAS  PubMed  Google Scholar 

  17. Mudalungu CM, Richter C, Wittstein K, Abdalla MA, Matasyoh JC, Stadler M, et al. Laxitextines A and B, Cyathane Xylosides from the Tropical Fungus Laxitextum incrustatum. J Nat Prod. 2016;79:894–8.

    Article  CAS  PubMed  Google Scholar 

  18. Zan K, Gan Y, Xie P, Zhang R, Ma S, Lin Q, et al. Anti-inflammatory new cyathane diterpene glucosides from Onychium japonicum. Phytochem Lett. 2021;44:206–9.

    Article  CAS  Google Scholar 

  19. Niemelä T, Saarenoksa R. Dentipellis fragilis and Steccherinum oreophilum: Finnish records of hydnaceous fungi. Karstenia. 1985;25:70–4.

    Article  Google Scholar 

  20. Shen LL, Wang MING. Morphological characteristics and molecular data reveal two new species of Dentipellis from China. Phytotax. 2019;323:69–76.

    Article  Google Scholar 

  21. Wei CL, Chang CC, Wu SH. Dentipellis fimbriata sp. nov.(Russulales, Basidiomycota) from subtropical Taiwan. Phytotaxa. 2020;428:131–8.

    Article  Google Scholar 

  22. Sum WC, Mitschke N, Schrey H, Wittstein K, Kellner H, Stadler M, et al. Antimicrobial and Cytotoxic Cyathane-Xylosides from Cultures of the Basidiomycete Dentipellis fragilis. Antibiotics. 2022;11:1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ha LS, Ki DW, Kim JY, Choi DC, Lee IK, Yun BS. Dentipellin, a new antibiotic from culture broth of Dentipellis fragilis. J Antibiot. 2021;74:538–41.

    Article  CAS  Google Scholar 

  24. Ki DW, Awouafack MD, Wong CP, Nguyen HM, Thai QM, Ton Nu LH, et al. Brominated Diphenyl Ethers Including a New Tribromoiododiphenyl Ether from the Vietnamese Marine Sponge Arenosclera sp. and Their Antibacterial Activities. Chem Biodivers. 2019;16:e1800593.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A1A01055657) and authors thank Ms. Ji-Young Oh, Center for University-wide Research Facilities (CURF) at Jeonbuk National University, for performing NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae-Won Ki or Bong-Sik Yun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ki, DW., Yun, BS. A new antibiotic from the culture broth of Dentipellis fragilis. J Antibiot 76, 351–354 (2023). https://doi.org/10.1038/s41429-023-00616-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00616-z

This article is cited by

Search

Quick links