Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alkyl aromatic derivatives from the endophytic fungus Cytospora rhizophorae

Abstract

Two new alkylresorcinols named herein 5’-methoxy-integracins A-B (1-2), two new monomeric alkyl aromatic derivatives 3-(7-hydroxyheptyl)-5-methoxyphenol (5) and 7-(3,5-dihydroxyphenyl) heptyl acetate (6), along with four known compounds including integracins A-B (3-4), 2,4-dihydroxy-6-(8-hydroxyoctyl) benzene (7), and cytosporone B (8) were isolated from the endophytic fungus Cytospora rhizophorae A761. The structures of the four new compounds were elucidated by NMR, HRESIMS data, and electronic circular dichroism (ECD) calculations, whereas the compounds 1 and 2 were disclosed as a class of the natural rare-occurring dimeric alkylresorcinol derivatives. Moreover, the bioassays of the new compounds clarified that compound 1 was a potent inhibitor for the α-glucosidase, and compound 2 showed relatively good activity against the tumor cell lines. It is worth mentioning that the known compound integracin B (4) was first reported to display significant antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) with MIC values of 6.25 μg ml−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tian SQ, Sun Y, Chen ZC, Zhao RY. Bioavailability and bioactivity of alkylresorcinols from different cereal products. J Food Qual. 2020;2020:1–6. https://doi.org/10.1155/2020/5781356.

    Article  CAS  Google Scholar 

  2. Hammerschick T, Wagner T, Vetter W. Isolation of saturated alkylresorcinols from rye grains by countercurrent chromatography. J Sep Sci. 2021;44:1904–12. https://doi.org/10.1002/jssc.202001230.

    Article  CAS  Google Scholar 

  3. Gao YM, Sun TY, Ma M, Chen GD, Zhou ZQ, Wang CX, et al. Adeninealkylresorcinol, the first alkylresorcinol tethered with nucleobase from Lasiodiplodia sp. Fitoterapia. 2016;112:254–9. https://doi.org/10.1016/j.fitote.2016.06.011

    Article  CAS  Google Scholar 

  4. Kikuchi H, Ito I, Takahashi K, Ishigaki H, Iizumi K, Kubohara Y. et al. Isolation, synthesis, and biological activity of chlorinated alkylresorcinols from Dictyostelium cellular slime molds. J Nat Prod. 2017;80:2716–22. https://doi.org/10.1021/acs.jnatprod.7b00456.

    Article  CAS  Google Scholar 

  5. López-Pliego L, García-Ramírez L, Cruz-Gómez EA, Domínguez-Ojeda P, López-Pastrana A, Fuentes-Ramírez LE. et al. Transcriptional study of the rsmZ-sRNAs and their relationship to the biosynthesis of alginate and alkylresorcinols in Azotobacter vinelandii. Mol Biotechnol. 2018;60:670–80. https://doi.org/10.1007/s12033-018-0102-7.

    Article  CAS  Google Scholar 

  6. Luís Â, Domingues F, Duarte AP. Biological properties of plant-derived alkylresorcinols: mini-review. Mini-Rev Med Chem. 2016;16:851–4. https://doi.org/10.2174/1389557516666160211121437.

    Article  CAS  Google Scholar 

  7. Kruk J, Aboul-Enein B, Bernstein J, Marchlewicz M. Dietary alkylresorcinols and cancer prevention: a systematic review. Eur Food Res Technol. 2017;243:1693–710. https://doi.org/10.1007/s00217-017-2890-6.

    Article  CAS  Google Scholar 

  8. Chen JP, Zhu LJ, Su XX, Zhang KX, Zhang X, Wang JH. et al. New alkylresorcinols from the fruits of Embelia ribes. Fitoterapia. 2018;128:66–72. https://doi.org/10.1016/j.fitote.2018.04.022.

    Article  CAS  Google Scholar 

  9. Oskarsson A, Andersson ÅO. Suppressed sex hormone biosynthesis by alkylresorcinols: a possible link to chemoprevention. Nutr Cancer. 2016;68:978–87. https://doi.org/10.1080/01635581.2016.1190022.

    Article  CAS  Google Scholar 

  10. Giambanelli E, Ferioli F, D’Antuono LP. Retention of alkylresorcinols, antioxidant activity and fatty acids following traditional hulled wheat processing. J Cereal Sci. 2018;79:98–105. https://doi.org/10.1016/j.jcs.2017.10.010.

    Article  CAS  Google Scholar 

  11. Martins TP, Rouger C, Glasser NR, Freitas S, Fraissinette NBDE, Balskus EP. et al. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat Prod Rep. 2019;36:1437–61. https://doi.org/10.1039/c8np00080h.

    Article  CAS  Google Scholar 

  12. Kozubek A, Tyman JHP. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev. 1999;99:1–25. https://doi.org/10.1021/cr970464o.

    Article  CAS  Google Scholar 

  13. Ross AB, Kamal-Eldin A, Aman P. Dietary alkylresorcinols: absorption, bioactivities, and possible use as biomarkers of whole grain wheat- and rye-rich foods. Nutr Rev. 2004;62:81–95. https://doi.org/10.1111/j.1753-4887.2004.tb00029.x.

    Article  Google Scholar 

  14. Choi BK, Phan THT, Hwang S, Oh DC, Kang JS, Lee HS. et al. Resorcinosides A and B, glycosylated alkylresorcinols from a marine-derived strain of the fungus Penicillium janthinellum. J Nat Prod. 2019;82:3186–90. https://doi.org/10.1021/acs.jnatprod.9b00776.

    Article  CAS  Google Scholar 

  15. Arisawa M, Ohmura K, Kobayashi A, Morita N. A cytotoxic constituent of lysimachia japonica THUNB. (Primulaceae) and the structure-activity relationships of related compounds. Chem Pharm Bull. 1989;37:2431–4. https://doi.org/10.1248/cpb.37.2431.

    Article  CAS  Google Scholar 

  16. Jin WT, Zjawiony JK. 5-Alkylresorcinols from Merulius incarnatus. J Nat Prod. 2006;69:704–6. https://doi.org/10.1021/np050520d.

    Article  CAS  Google Scholar 

  17. Parikka K, Rowland IR, Welch RW, Wähälä K. In vitro antioxidant activity and antigenotoxicity of 5-n-alkylresorcinols. J Agric Food Chem. 2006;54:1646–50. https://doi.org/10.1021/jf052486e.

    Article  CAS  Google Scholar 

  18. Singh SB, Zink DL, Bills GF, Pelaez F, Teran A, Collado J. et al. Discovery, structure and HIV-1 integrase inhibitory activities of integracins, novel dimeric alkyl aromatics from Cytonaema sp. Tetrahedron Lett. 2002;43:1617–20. https://doi.org/10.1016/s0040-4039(02)00083-7.

    Article  CAS  Google Scholar 

  19. Shi C, Xu MJ, Bayer M, Deng ZW, Kubbutat MHG, Waejen W. et al. Phenolic compounds and their anti-oxidative properties and protein kinase inhibition from Chinese mangrove plant Laguncularia racemose. Phytochem. 2010;71:435–42. https://doi.org/10.1016/j.phytochem.2009.11.008.

    Article  CAS  Google Scholar 

  20. Dayam R, Neamati N. Small-molecule HIV-1 integrase inhibitors: the 2001-2002 update. Curr Pharm Des. 2003;9:1789–802. https://doi.org/10.2174/1381612033454469.

    Article  CAS  Google Scholar 

  21. Dang PH, Nguyen LTT, Nguyen HTT, Le TH, Do TNV, Nguyen HX. et al. A new dimeric alkylresorcinol from the stem barks of Swintonia floribunda (Anacardiaceae). Nat Prod Res. 2019;33:2883–9. https://doi.org/10.1080/14786419.2018.1509329.

    Article  CAS  Google Scholar 

  22. Liu HL, Huang XY, Li J, Xin GR, Guo YW. Absolute configurations of integracins A, B, and 15-dehydroxy-integracin B. Chirality. 2012;24:459–62. https://doi.org/10.1002/chir.22012.

    Article  CAS  Google Scholar 

  23. Shibazaki M, Tanaka K, Nagai K, Watanabe M, Fujita S, Suzuki K. et al. YM-92447 (spinosulfate A), a neuraminidase inhibitor produced by an unidentified pycnidial fungus. J Antibiot. 2004;57:812–5. https://doi.org/10.7164/antibiotics.57.812.

    Article  CAS  Google Scholar 

  24. Li ZH, Yang HY, Zhu WT, Jing DD, Li SN, Yan PK. Myrothecol A, a new alkylresorcinol with cytotoxicity from Myrothecium sp. Nat Pro Res. 2020;36:96–101. https://doi.org/10.1080/14786419.2020.1762191.

    Article  CAS  Google Scholar 

  25. Guo YZ, Yang XM, Li YY. Effect of alkylresorcinols on autophagy, migration, and invasion of HepG2 cells. J Food Sci. 2019;84:3063–8. https://doi.org/10.1111/1750-3841.14789.

    Article  CAS  Google Scholar 

  26. Bokam R, Annam SCVAR, Yalavarthi NR, Gundoju N, Ponnapalli MG. Bioinspired first stereoselective total synthesis of spinosulfate B. ChemistrySelect. 2019;4:8911–4. https://doi.org/10.1002/slct.201900396.

    Article  CAS  Google Scholar 

  27. Chen SC, Li HH, Chen YC, Li SN, Xu JL, Guo H. et al. Three new diterpenes and two new sesquiterpenoids from the endophytic fungus Trichoderma koningiopsis A729. Bioorg Chem. 2019;8:6368–374. https://doi.org/10.1016/j.bioorg.2019.02.005.

    Article  CAS  Google Scholar 

  28. Liu HX, Tan HB, Chen YC, Guo XY, Wang WX, Guo H. et al. Cytorhizins A-D, four highly structure-combined benzophenones from the endophytic fungus Cytospora rhizophorae. Org Lett. 2019;21:1063–7. https://doi.org/10.1021/acs.orglett.8b04107.

    Article  CAS  Google Scholar 

  29. Liu HX, Tan HB, Wang WX, Zhang WG, Chen YC, Li SN. et al. Cytorhizophins A and B, benzophenone-hemiterpene adducts from the endophytic fungus Cytospora rhizophorae. Org Chem Front. 2019;6:591–6. https://doi.org/10.1039/c8qo01306c.

    Article  CAS  Google Scholar 

  30. Liu ZM, Tan HB, Chen K, Chen YC, Zhang WG, Chen SC. et al. Rhizophols A and B, antioxidant and axially chiral benzophenones from the endophytic fungus Cytospora rhizophorae. Org Biomol Chem. 2019;17:10009–12. https://doi.org/10.1039/c9ob02282a.

    Article  CAS  Google Scholar 

  31. Santos ML, Magalhães GC. Utilisation of cashew nut shell liquid from Anacardium occidentale as starting material for organic synthesis: a novel route to lasiodiplodin from cardols. J Braz Chem Soc. 1999;10:13–20. https://doi.org/10.1590/s0103-50531999000100003.

    Article  Google Scholar 

  32. Goddard ML, Mottier N, Jeanneret-Gris J, Christen D, Tabacchi R, Abou-Mansour E. Differential production of phytotoxins from Phomopsis sp. from grapevine plants showing esca symptoms. J Agric Food Chem. 2014;62:8602–7. https://doi.org/10.1021/jf501141g.

    Article  CAS  Google Scholar 

  33. Chapdelaine P, Tremblay RR, Dubé JY. P-Nitrophenol-alpha-D-glucopyranoside as substrate for measurement of maltase activity in human semen. Clin Chem. 1978;24:208–11. https://doi.org/10.1093/clinchem/24.2.208.

    Article  CAS  Google Scholar 

  34. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D. et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–12. https://doi.org/10.1093/jnci/82.13.1107.

    Article  CAS  Google Scholar 

  35. Wang MM, Zhao LY, Chen K, Shang YX, Wu JF, Guo XY. et al. Antibacterial sesquiterpenes from the stems and roots of Thuja sutchuenensis. Bioorg Chem. 2020;96:103645. https://doi.org/10.1016/j.bioorg.2020.103645.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this research was provided by the National Natural Science Foundation of China (No. 82173711), Natural Science Foundation of Guangdong Province (No. 2019A1515011694), Guangdong Special Support Program (2019TQ05Y375) and Youth Innovation Promotion Association of CAS (2020342).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weimin Zhang or Haibo Tan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, H., Chen, Y. et al. Alkyl aromatic derivatives from the endophytic fungus Cytospora rhizophorae. J Antibiot 76, 121–130 (2023). https://doi.org/10.1038/s41429-022-00591-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00591-x

Search

Quick links