Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Isolation, characterization, and bioactivity profiling of oxazoline containing madurastatin siderophores from Actinomadura sp.

Abstract

Nine new hydroxyphenyloxazolines, madurastatin B4, C2, D3 and D4, E1 and E2, F1 as well as G1 and G2 (816), along with two new enantiomers of madurastatin D1 (ent-6) and D2 (ent-7) and two known congeners, madurastatin B1 (2) and C1 (5), were isolated from the liquid culture of Actinomadura sp. ST100801 based on the initial activity against Escherichia coli screened in bicarbonate-supplemented Mueller Hinton II medium and identification via molecular networking. Structure elucidation was achieved by comprehensive 1D and 2D NMR as well as MS/MS fragmentation analyses. Their absolute configuration was determined by Marfey’s analysis. Complemented with functionalized hydroxyphenyloxazolines (2, 41718) obtained by total synthesis, the isolated compounds were evaluated for antibacterial activities revealing MICs down to 4 µg ml−1 against Moraxella catarrhalis. Therefore, this study enlarges the family of madurastatin siderophores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Helsel ME, Franz KJ. Pharmacological activity of metal binding agents that alter copper bioavailability. Dalton Trans. 2015;44:8760–70.

    Article  CAS  Google Scholar 

  2. Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27:637–57.

    Article  CAS  Google Scholar 

  3. Miethke M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics. 2013;5:15–28.

    Article  CAS  Google Scholar 

  4. Snow GA. Isolation and Structure of Mycobactin T, a Growth Factor from Mycobacterium tuberculosis. Biochem J. 1965;97:166–75.

    Article  CAS  Google Scholar 

  5. Sontag B, Gerlitz M, Paululat T, Rasser HF, Grün-Wollny I, Hansske FG. Oxachelin, a Novel Iron Chelator and Antifungal Agent from Streptomyces sp. GW9/1258. J Antibiot. 2006;59:659–63.

    Article  CAS  Google Scholar 

  6. Fox Ramos AE, Evanno L, Poupon E, Champy P, Beniddir MA. Natural products targeting strategies involving molecular networking: different manners, one goal. Nat Prod Rep. 2019;36:960–80.

    Article  CAS  Google Scholar 

  7. Harada K, Tomita K, Fujii K, Masuda K, Mikami Y, Yazawa K, Komaki H. Isolation and Structural Characterization of Siderophores, Madurastatins, Produced by a Pathogenic Actinomadura madurae. J Antibiot. 2004;57:125–35.

    Article  CAS  Google Scholar 

  8. Mazzei E, Iorio M, Maffioli SI, Sosio M, Donadio S. Characterization of madurastatin C1, a novel siderophore from Actinomadura sp. J Antibiot. 2012;65:267–9.

    Article  CAS  Google Scholar 

  9. Yan J-X, Chevrette MG, Braun DR, Harper MK, Currie CR, Bugni TS. Madurastatin D1 and D2, Oxazoline Containing Siderophores Isolated from an Actinomadura sp. Org Lett. 2019;21:6275–9.

    Article  CAS  Google Scholar 

  10. Wu C, Miller PA, Miller MJ. Syntheses and studies of amamistatin B analogs reveals that anticancer activity is relatively independent of stereochemistry, ester or amide linkage and select replacement of one of the metal chelating groups. Bioorg Med Chem Lett. 2011;21:2611–5.

    Article  CAS  Google Scholar 

  11. Ikeda Y, Nonaka H, Furumai T, Onaka H, Igarashi Y. Nocardimicins A, B, C, D, E, and F, Siderophores with Muscarinic M3 Receptor Inhibiting Activity from Nocardia sp. TP-A0674. J Nat Prod. 2005;68:1061–5.

    Article  CAS  Google Scholar 

  12. Kessler H. Cistrans‐Isomerie bei N‐monosubstituierten Amiden. Angew Chem. 1968;80:201.

    Article  Google Scholar 

  13. Bhushan R, Brückner H. Use of Marfey’s reagent and analogs for chiral amino acid analysis: assessment and applications to natural products and biological systems. J Chromatogr B. 2011;879:3148–61.

    Article  CAS  Google Scholar 

  14. Marfey P. Determination of d-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun. 1984;49:591–96.

    Article  CAS  Google Scholar 

  15. Zhang X, He H, Ma R, Ji Z, Wei Q, Dai H, et al. Madurastatin B3, a rare aziridine derivative from actinomycete Nocardiopsis sp. LS150010 with potent anti-tuberculosis activity. J Ind Microbiol Biotechnol. 2017;44:589–94.

    Article  CAS  Google Scholar 

  16. Shaaban KA, Saunders MA, Zhang Y, Tran T, Elshahawi SI, Ponomareva LV, et al. Spoxazomicin D and Oxachelin C, Potent Neuroprotective Carboxamides from the Appalachian Coal Fire-Associated Isolate Streptomyces sp. RM-14-6. J Nat Prod. 2017;80:2–11.

    Article  CAS  Google Scholar 

  17. Tyler AR, Mosaei H, Morton S, Waddell PG, Wills C, McFarlane W, et al. Structural Reassignment and Absolute Stereochemistry of Madurastatin C1 (MBJ-0034) and the Related Aziridine Siderophores: Madurastatins A1, B1, and MBJ-0035. J Nat Prod. 2017;80:1558–62.

    Article  CAS  Google Scholar 

  18. Marner M, Patras MA, Kurz M, Zubeil F, Förster F, Schuler S, et al. Molecular Networking-Guided Discovery and Characterization of Stechlisins, a Group of Cyclic Lipopeptides from a Pseudomonas sp. J Nat Prod. 2020;83:2607–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Hessen State Ministry of Higher Education, Research, and the Arts (HMWK) via generous grant for the LOEWE Research Center Insect Biotechnology and Bioresources. Sanofi-Aventis Deutschland GmbH and Evotec International GmbH contributed in the framework of the Sanofi-Fraunhofer Natural Product Center of Excellence/Fraunhofer Evotec Natural Products Excellence Center. We thank Dr. Armin Bauer, Dr. Heike Hausmann, and Dr. Christoph Pöverlein for valuable discussions and the NMR department of the Justus-Liebig University Giessen for technical assistance. We gratefully acknowledge Christine Wehr for supporting the fermentation, Judith Härter for assisting the isolation, Kirsten Bommersheim for MIC determination, Christoph Hartwig for assistance regarding LCMS measurements, and Dr. Dennis Gerbig (Justus-Liebig University Giessen) for performing the UV/Vis measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria A. Patras or Sören M. M. Schuler.

Ethics declarations

Conflict of interest

MK, PEH, and SMMS are or have been employed by Sanofi-Aventis Deutschland GmbH and Evotec International GmbH, respectively.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bill, MK., Kleiner, Y., Flügel, J.L. et al. Isolation, characterization, and bioactivity profiling of oxazoline containing madurastatin siderophores from Actinomadura sp.. J Antibiot 75, 576–582 (2022). https://doi.org/10.1038/s41429-022-00557-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00557-z

Search

Quick links