Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic antibacterial and anti-biofilm activities of resveratrol and polymyxin B against multidrug-resistant Pseudomonas aeruginosa

Abstract

Bacterial infection caused by multidrug-resistant Pseudomonas aeruginosa has become a challenge in clinical practice. Polymyxins are used as the last resort agent for otherwise untreatable Gram-negative bacteria, including multidrug-resistant P.aeruginosa. However, pharmacodynamic (PD) and pharmacokinetic (PK) data on polymyxins suggest that polymyxin monotherapy is unlikely to generate reliably efficacious plasma concentrations. Also, polymyxin resistance has been frequently reported, especially among multidrug-resistant P.aeruginosa, which further limits its clinical use. A strategy for improving the antibacterial activity of polymyxins and preventing the development of polymyxin resistance is to use polymyxins in combination with other agents. In this study, we have demonstrated that resveratrol, a well tolerated compound, has synergistic effects when tested in vitro with polymyxin B on antibacterial and anti-biofilm activities. However, its’ systemic use is limited as the required high plasma levels of resveratrol are not achievable. This suggests that it could be a partner for the combination therapy of polymyxin B in the treatment of topical bacterial infection caused by MDR P.aeruginosa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rotschafer JC, Shikuma LR. Pseudomonas aeruginosa susceptibility in a university hospital: recognition and treatment. Drug Intell Clin Pharm. 1986;20:575–81.

    CAS  PubMed  Google Scholar 

  2. Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev. 2018;31:e00019–18.

    Article  PubMed  PubMed Central  Google Scholar 

  3. World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017.

  4. National Nosocomial Infections Surveillance (NNIS). System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–85.

    Article  PubMed  Google Scholar 

  5. Dou Y, Huan J, Guo F, Zhou Z, Shi Y. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J Int Med Res. 2017;45:1124–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother. 2004;48:4606–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Curcio D. Multidrug-resistant Gram-negative bacterial infections: are you ready for the challenge? Curr Clin Pharm. 2014;9:27–38.

    Article  CAS  Google Scholar 

  8. Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005;40:1333–41.

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006;6:589–601.

    Article  CAS  PubMed  Google Scholar 

  10. Satlin MJ, Lewis JS, Weinstein MP, Patel J, Humphries RM, Kahlmeter G, et al. Clinical and laboratory standards institute and european committee on antimicrobial susceptibility testing position statements on polymyxin b and colistin clinical breakpoints. Clin Infect Dis. 2020;71:e523–e529.

    CAS  PubMed  Google Scholar 

  11. Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther. 2012;10:917–34.

    Article  CAS  PubMed  Google Scholar 

  12. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30:557–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doi Y, van Duin D. Polymyxin resistance in klebsiella pneumoniae: complexity at every level. Clin Infect Dis. 2020;70:2092–4.

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Xu J, Zhu Q, Ren Y, Zhao L. Polymyxin B resistance rates in carbapenem-resistant Pseudomonas aeruginosa isolates and a comparison between Etest® and broth microdilution methods of antimicrobial susceptibility testing. Exp Ther Med. 2020;20:762–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39:10–39.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ribera A, Benavent E, Lora-Tamayo J, Tubau F, Pedrero S, Cabo X, et al. Osteoarticular infection caused by MDR Pseudomonas aeruginosa: the benefits of combination therapy with colistin plus β-lactams. J Antimicrob Chemother. 2015;70:3357–65.

    CAS  PubMed  Google Scholar 

  17. Carlson A, Alderete KS, Grant MKO, Seelig DM, Sharkey LC, Zordoky BNM. Anticancer effects of resveratrol in canine hemangiosarcoma cell lines. Vet Comp Oncol. 2018;16:253–61.

    Article  CAS  PubMed  Google Scholar 

  18. Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J. Multiplicity of effects and health benefits of resveratrol. Med (Kaunas). 2016;52:148–55.

    Google Scholar 

  19. Nøhr-Meldgaard K, Ovsepian A, Ingmer H, Vestergaard M. Resveratrol enhances the efficacy of aminoglycosides against Staphylococcus aureus. Int J Antimicrob Agents. 2018;52:390–6.

    Article  PubMed  CAS  Google Scholar 

  20. Singkham-In U, Higgins PG, Wannigama DL, Hongsing P, Chatsuwan T. Rescued chlorhexidine activity by resveratrol against carbapenem-resistant Acinetobacter baumannii via down-regulation of AdeB efflux pump. PLoS One. 2020;15:e0243082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu L, Yu J, Shen X, Cao X, Zhan Q, Guo Y, et al. Resveratrol enhances the antimicrobial effect of polymyxin B on Klebsiella pneumoniae and Escherichia coli isolates with polymyxin B resistance. BMC Microbiol. 2020;20:306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Feng X, Liu S, Wang Y, Zhang Y, Sun L, Li H, et al. Synergistic activity of colistin combined with auranofin against colistin-resistant gram-negative bacteria. Front Microbiol. 2021;12:676414.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Doern CD. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol. 2014;52:4124–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lewis K. Riddle of biofilm resistance. Antimicrobial Agents Chemother. 2001;45:999–1007.

    Article  CAS  Google Scholar 

  25. Gupta P, Mankere B, Chekkoora Keloth S, Tuteja U, Pandey P, Chelvam KT. Increased antibiotic resistance exhibited by the biofilm of Vibrio cholerae O139. J Antimicrob Chemother. 2018;73:1841–7.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Orphaly M, Hadi HA, Eltayeb FK, Al-Hail H, Samuel BG, Sultan AA, et al. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere. 2021;6:e00202–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fernández L, Alvarez-Ortega C, Wiegand I, Olivares J, Kocíncová D, Lam JS, et al. Characterization of the polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:110–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Falagas ME, Rafailidis PI, Matthaiou DK. Resistance to polymyxins: Mechanisms, frequency and treatment options. Drug Resist Updat. 2010;13:132–8.

    Article  CAS  PubMed  Google Scholar 

  29. McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A, Brazas MD, et al. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol. 2006;188:3995–4006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.

    Article  PubMed  CAS  Google Scholar 

  31. Zavascki AP, Nation RL. Nephrotoxicity of polymyxins: is there any difference between colistimethate and polymyxin B? Antimicrob Agents Chemother. 2017;61:e02319–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang P, Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors. 2018;44:16–25.

    Article  CAS  PubMed  Google Scholar 

  33. Cannatelli A, Principato S, Colavecchio OL, Pallecchi L, Rossolini GM. Synergistic activity of colistin in combination with resveratrol against colistin-resistant gram-negative pathogens. Front Microbiol. 2018;9:1808.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomark Prev. 2007;16:1246–52.

    Article  CAS  Google Scholar 

  35. Duan J, Li M, Hao Z, Shen X, Liu L, Jin Y, et al. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus aureus isolates by downregulating saeRS. Emerg Microbes Infect. 2018;7:136.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhou X, Ruan Q, Ye Z, Chu Z, Xi M, Li M, et al. Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. Burns 2021;47:133–9.

    Article  PubMed  Google Scholar 

  37. Varricchio AM, Capasso M, Della Volpe A, Malafronte L, Mansi N, Varricchio A, et al. Resveratrol plus carboxymethyl-β-glucan in children with recurrent respiratory infections: a preliminary and real-life experience. Ital J Pediatr. 2014;40:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bonomo RA, Van Zile PS, Li Q, Shermock KM, McCormick WG, Kohut B. Topical triple-antibiotic ointment as a novel therapeutic choice in wound management and infection prevention: a practical perspective. Expert Rev Anti Infect Ther. 2007;5:773–82.

    Article  CAS  PubMed  Google Scholar 

  39. Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020;21:8671.

    Article  CAS  PubMed Central  Google Scholar 

  40. She P, Wang Y, Luo Z, Chen L, Tan R, Wang Y, et al. Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa. Microbiologyopen 2018;7:e00545.

    Article  CAS  Google Scholar 

  41. Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R. Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 2014;42:1–7.

    Article  CAS  PubMed  Google Scholar 

  42. James GA, Swogger E, Wolcott R, Pulcini ED, Secor P, Sestrich J, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16:37–44.

    Article  PubMed  Google Scholar 

  43. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen. 2008;16:2–10.

    Article  PubMed  Google Scholar 

  44. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiellapneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000;44:1818–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nethery W, Warner P, Durkee P, Dwyer A, Zembrodt J, Fowler L. Efficacy of topical antimicrobial agents against bacterial isolates from burn wounds. J Burn Care Res. 2020;41:739–42.

    Article  PubMed  Google Scholar 

  46. Bosscha MI, van Dissel JT, Kuijper EJ, Swart W, Jager MJ. The efficacy and safety of topical polymyxin B, neomycin and gramicidin for treatment of presumed bacterial corneal ulceration. Br J Ophthalmol. 2004;88:25–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Decraene V, Ghebrehewet S, Dardamissis E, Huyton R, Mortimer K, Wilkinson D, et al. An outbreak of multidrug-resistant Pseudomonas aeruginosa in a burns service in the North of England: challenges of infection prevention and control in a complex setting. J Hosp Infect. 2018;100:e239–e245.

    Article  CAS  PubMed  Google Scholar 

  48. Vatan A, Saltoglu N, Yemisen M, Balkan II, Surme S, Demiray T, et al. Association between biofilm and multi/extensive drug resistance in diabetic foot infection. Int J Clin Pract. 2018;72:e13060.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Shiyan Renmin Hospital of Hubei University of Medicine and the Jinzhou Medical University.

Funding

This work was supported by the Science Foundation of Hubei Health Commission in Hubei province (Grant No: WJ2021F040).

Author information

Authors and Affiliations

Authors

Contributions

LL, JJ, LQ, and RX designed the study. LQ was in charge of this study and performed the majority of those experiments. RX drafted the manuscript and revised it critically for important intellectual content. SZ, HL, YJ and MA participated in the collection and identification of MDR P.aeruginosa isolates and the genetic analysis.

Corresponding author

Correspondence to Lian Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Liang, R., Duan, J. et al. Synergistic antibacterial and anti-biofilm activities of resveratrol and polymyxin B against multidrug-resistant Pseudomonas aeruginosa. J Antibiot 75, 567–575 (2022). https://doi.org/10.1038/s41429-022-00555-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00555-1

This article is cited by

Search

Quick links