Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prevalence of polymyxin resistance through the food chain, the global crisis

Abstract

Antimicrobial resistance is one of the vital challenges facing global health today. Multi-drug resistant (MDR) infections are often treated with the narrow-spectrum drugs, colistin (polymyxin E) or polymyxin B, which are last-resort antibiotics for human therapeutics that are effective against Gram-negative bacteria. Unfortunately, resistance to these polymyxins has occurred because of selective pressure caused by the inappropriate use of those antibiotics, especially in farming. The mechanisms of resistance to polymyxins are mediated through intrinsic, mutational, or genetic alteration in chromosomal genes. The mechanism includes the regulatory network controlling chemical modifications of lipid A moiety of lipopolysaccharide, reducing the negative charge of lipid A and its affinity for polymyxins. Additionally, the unique mobile colistin/polymyxin B resistance (mcr) gene reported in Enterobacteriales is responsible for the horizontal dissemination of resistance to polymyxins via the food chain. There is now an urgent need to increase surveillance for detecting resistance to polymyxins. Therefore, this review presents an overview of presently available scientific literature on the mechanism of resistance to polymyxins, with their associated gene variants, evaluation methods, resistance transmission through the food chain via food bacteria, and related risk factors. We further focus on the significant implications of polymyxins usage in India and future views for food safety to preserve polymyxin activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lim LM, Ly N, Anderson D, Yang JC, Macander L, Jarkowski III A, et al. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacother. 2010;30:1279–91.

  2. Bello A, Dingle TC. What’s that resistance mechanism? Understanding genetic determinants of Gram-negative bacterial resistance. Clin Microbiol Newsl. 2018;40:165–74.

    Article  Google Scholar 

  3. Morehead MS, Scarbrough C. Emergence of global antibiotic resistance. Prim Care. 2018;45:467–84.

    Article  PubMed  Google Scholar 

  4. Aghapour Z, Gholizadeh GK, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist. 2019;12:965–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boucher HW, Talbot GH, Benjamin DK Jr, Bradley J Jr, Guidos RJ, Jones RN, et al. “10ב20 progress—development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013;56:1685–94.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 2007;60:1206–15.

    Article  CAS  PubMed  Google Scholar 

  7. Bialvaei AZ, Samadi KH. Colistin, mechanisms, and prevalence of resistance. Curr Med Res Opin. 2015;31:707–21.

    Article  CAS  PubMed  Google Scholar 

  8. Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). J Antimicrob Chemother. 2011;66:2070–4.

    Article  CAS  PubMed  Google Scholar 

  9. Nation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese? Clin Infect Dis: Off Publ Infect Dis Soc Am. 2014;59:88–94.

    Article  CAS  Google Scholar 

  10. Olaitan AO, Li J. Emergence of polymyxin resistance in Gram-negative bacteria. Int J Antimicrob Agents. 2016;48:581–2.

    Article  CAS  PubMed  Google Scholar 

  11. Biswas S, Brunel JM, Dubus JC, Gaubert MR, Rolain JM. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther. 2012;10:917–34.

    Article  CAS  PubMed  Google Scholar 

  12. Rhouma M, Beaudry F, Letellier A. Resistance to colistin: what is the fate for this antibiotic in pig production? Int J Antimicrob Agents. 2016a;48:119–26.

    Article  CAS  PubMed  Google Scholar 

  13. Rhouma M, Beaudry F, Theriault W, Letellier A. Colistin in pig production: chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Front Microbiol. 2016b;7:1789.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moffatt JH, Harper M, Adler B, Nation RL, Li J, Boyce JD. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55:3022–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014a;5:643.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother. 2012;67:1607–15.

    Article  CAS  PubMed  Google Scholar 

  17. Karaiskos I, Lagou S, Portikis K, Rapti V, Poulakou G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front Public Health. 2019;7:151.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30:557–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

    Article  CAS  PubMed  Google Scholar 

  20. Catry B, Cavaleri M, Baptiste K, Grave K, Grein K, Holm A, et al. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents. 2015;46:297–306.

    Article  CAS  PubMed  Google Scholar 

  21. Walia K, Sharma M, Vijay S, Shome BR. Understanding policy dilemmas around antibiotic use in food animals & offering potential solutions. Indian J Med Res. 2019;149:107–18.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.

    Article  PubMed  Google Scholar 

  23. Walsh TR, Wu Y. China bans colistin as a feed additive for animals. Lancet Infect Dis. 2016;16:1102–3.

    Article  PubMed  Google Scholar 

  24. European Medicines Agency. Updated advice on the use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. 2016. https://www.ema.europa.eu/en/documents/scientific-guideline/updated-advice-use-colistin-products-animals-within-european-union-development-resistance-possible_en-0.pdf.

  25. Irrgang A, Roschanski N, Tenhagen BA, Grobbel M, Skladnikiewich Z, Thomas K, et al. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010-5. PloS One. 2016;11:e0159863.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.

    Article  CAS  PubMed  Google Scholar 

  27. Lee JY, Choi MJ, Choi HJ, Ko KS. Preservation of acquired colistin resistance in Gram-negative bacteria. Antimicrob Agents Chemother. 2016;60:609–12.

    Article  PubMed  Google Scholar 

  28. Landman D, Georgescu C, Martin DA, Quale J. Polymyxins revisited. Clin Microbiol Rev. 2008;21:449–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nation RL, Li J. Colistin in the 21st century. Curr Opin Infect Dis. 2009;22:535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pieren M, Tigges M. Adjuvant strategies for potentiation of antibiotics to overcome antimicrobial resistance. Curr Opin Pharm. 2012;12:551–5.

    Article  CAS  Google Scholar 

  31. Ito-Kagawa M, Koyama Y. Selective cleavage of a peptide antibiotic, colistin by colistinase. J Antibiot. 1980;33:1551–5.

    Article  CAS  Google Scholar 

  32. Hood MI, Becker KW, Roux CM, Dunman PM, Skaar EP. Genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect Immun. 2013;81:542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gunn JS. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 2008;16:284–90.

    Article  CAS  PubMed  Google Scholar 

  34. Srinivas P, Rivard K. Polymyxin resistance in Gram-negative pathogens. Curr Infect Dis Rep. 2017;19:38.

    Article  PubMed  Google Scholar 

  35. Sun S, Negrea A, Rhen M, Andersson DI. Genetic analysis of colistin resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother. 2009;53:2298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diene SM, Merhej V, Henry M, Filali AE, Rous V, Robert C, et al. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new “killer bugs” are created because of a sympatric lifestyle. Mol Biol Evol. 2013;30:369–83.

    Article  CAS  PubMed  Google Scholar 

  37. Nordmann P, Jayol A, Poirel L. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg Infect Dis. 2016;22:1038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park SY, Groisman EA. Signal‐specific temporal response by the Salmonella PhoP/PhoQ regulatory system. Mol Microbiol. 2014;91:135–44.

    Article  CAS  PubMed  Google Scholar 

  39. Velkov T, Soon RL, Chong PL, Huang JX, Cooper MA, Azad MAK, et al. Molecular basis for the increased polymyxin susceptibility of Klebsiella pneumoniae strains with under-acylated lipid A. Innate Immun. 2013b;19:265–77.

    Article  PubMed  Google Scholar 

  40. Son SJ, Huang R, Squire CJ, Leung IKH. MCR-1: a promising target for structure-based design of inhibitors to tackle polymyxin resistance. Drug Discov Today. 2019;24:206–16.

    Article  CAS  PubMed  Google Scholar 

  41. Quiroga C, Nastro M, Di Conza J. Current scenario of plasmid-mediated colistin resistance in Latin America. Rev Argent Microbiol. 2019;51:93–100.

    PubMed  Google Scholar 

  42. Mlynarcik P, Kolar M. Molecular mechanisms of polymyxin resistance and detection of mcr genes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019;163:28–38.

    Article  PubMed  Google Scholar 

  43. Lippa AM, Goulian M. Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS Genet. 2009;5:e1000788.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Olaitan AO, Diene SM, Kempf M, Bakour S, Gupta SK, Thongmalayvong B, et al. Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria, and France owing to inactivation of the PhoP/PhoQ regulator mgrB: an epidemiological and molecular study. Int J Antimicrob Agents. 2014b;44:500–7.

    Article  CAS  PubMed  Google Scholar 

  45. Cannatelli A, Giani T, D’Andrea MM, Pilato VD, Arena F, Conte V, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother. 2014;58:5696–703.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wright MS, Suzuki Y, Jones MB, Marshall SH, Rudin SD, Duin DV, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob Agents Chemother. 2015;59:536–43.

    Article  PubMed  Google Scholar 

  47. Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun. 2004;72:7107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Llobet E, Tomas JM, Bengoechea JA. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 2008;154:3877–86.

    Article  CAS  PubMed  Google Scholar 

  49. Baron S, Hadjadj L, Rolain JM, Olaitan OA. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents. 2016;48:583–91.

    Article  CAS  PubMed  Google Scholar 

  50. Formosa C, Herold M, Vidaillac C, Duval RE, Dague E. Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy. J Antimicrob Chemother. 2015;70:2261–70.

    Article  CAS  PubMed  Google Scholar 

  51. Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrobl Agents Chemother. 2010;54:4971–7.

    Article  CAS  Google Scholar 

  52. Chambers JR, Sauer K. The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ. J Bacteriol. 2013;195:4678–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother. 2013;57:4449–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loutet SA, Valvano MA. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Front Cell Infect Microbiol. 2011;1:6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ni W, Li Y, Guan J, Zhao J, Cui J, Wang R, et al. Effects of efflux pump inhibitors on colistin resistance in multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother. 2016;60:3215–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosenblum R, Khan E, Gonzalez G, Hasan R, Schneiders T. Genetic regulation of the ramA locus and its expression in clinical isolates of Klebsiella pneumoniae. Int J Antimicrob Agents. 2011;38:39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. De Majumdar S, Yu J, Fookes M, McAteer SP, Llobet E, Finn S, et al. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog. 2015;11:e1004627.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Raetz CR, Reynolds CM, Trent MS, Bishop RE. Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem. 2007;76:295–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Feng Y. Transferability of MCR-1/2 polymyxin resistance: complex dissemination and genetic mechanism. ACS Infect Dis. 2018;4:291–300.

    Article  CAS  PubMed  Google Scholar 

  60. Mulvey MR, Mataseje LF, Robertson J, Nash JHE, Boerlin P, Toye B, et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis. 2016;16:289–90.

    Article  PubMed  Google Scholar 

  61. Zhao F, Feng Y, Lu X, McNally A, Zong Z. Remarkable diversity of Escherichia coli carrying mcr-1 from hospital sewage with the identification of two New mcr-1 variants. Front Microbiol. 2017;8:2094.

    Article  PubMed  PubMed Central  Google Scholar 

  62. El-Sayed Ahmed MAE, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the era of antibiotic resistance: an extended review (2000-19). Emerg Microbes Infect. 2020;9:868–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. Enterica serovar Paratyphi B. J Antimicrob Chemother. 2017;72:3317–24.

    Article  CAS  PubMed  Google Scholar 

  64. Xavier BB, Lammens C, Ruhal R, Singh SK, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eur Surveill. 2016;21:30280.

    Article  Google Scholar 

  65. Zhang J, Chen L, Wang J, Butaye P, Huang K, Qiu H, et al. Molecular detection of colistin resistance genes (mcr-1 to mcr-5) in human vaginal swabs. BMC Res Notes. 2018a;11:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio 2017;8:e00543–e00617.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eur Surveill. 2017;22:30589.

    Article  Google Scholar 

  68. Xu Y, Zhong LL, Srinivas S, Sun J, Huang M, Peterson DL, et al. Spread of MCR-3 colistin resistance in China: an epidemiological, genomic and mechanistic study. EBio Med. 2018;34:139–57.

    CAS  Google Scholar 

  69. Fernandes MR, Cerdeira L, Silva MM, Sellera FP, Munoz M, Junior FG, et al. Novel mcr-5.3 variant in a CTX-M-8-producing Escherichia coli ST711 isolated from an infected horse. J Antimicrob Chemother. 2018;73:3520–2.

    CAS  PubMed  Google Scholar 

  70. Monte DF, Fernandes MR, Cerdeira L, Esposito F, Galvao JA, Franco BDGM, et al. Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob Agents Chemother. 2017;61:e02718–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, et al. mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother. 2017;72:2745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang YQ, Li YX, Lie CW, Zhang AY, Wang HN. Novel plasmid mediated colistin resistance gene mcr-7.1 in K. pneumoniae. J Antimicrob Chemother. 2018;73:1791–5.

    Article  CAS  PubMed  Google Scholar 

  73. Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7:1–9.

    Article  Google Scholar 

  74. Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica Serotype Typhimurium isolate. MBio 2019;10:e00853–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang C, Feng Y, Liu L, Wei L, Kang M, Zong Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg microbe infect. 2020;9:508–16.

    Article  CAS  Google Scholar 

  76. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Vol. 8, EUCAST, V¨axj¨o, Sweden; 2018. https://eucast.org/eucast_news/news_singleview/?tx_ttnews%5Btt_news%5D=248&cHash=91e3ef09a79b333746462d8854ee016d.

  77. Clinical and Laboratory Standards Institute. M07–A10: Methods for dilution antimicrobial susceptibility tests for bacteria @at grow aerobically: approved standard. 10th ed. Vol. 35, CLSI, Wayne, PA, USA; 2015.

  78. Sautrey G, Duval RE, Chevalley A, Fontanay S, Clarot I. Capillary electrophoresis for fast detection of heterogeneous population in colistin-resistant Gram-negative bacteria. Electrophoresis 2015;36:2630–3.

    Article  CAS  PubMed  Google Scholar 

  79. Bardet L, Rolain JM. Development of new tools to detect colistin-resistance among Enterobacteriaceae strains. Can J Infect Dis Med Microbiol. 2018;2018:3095249.

  80. Fernandes MR, Moura Q, Sartori L, Silva KC, Cunha MPV, Esposito F, et al. Silent dissemination of colistin-resistant Escherichia coli in South America could contribute to the global spread of the mcr-1 gene. Eur Surveill. 2016;21:30214.

    Article  Google Scholar 

  81. Meinersmann RJ, Ladely SR, Plumblee JR, Cook KL, Thacker E. Prevalence of mcr-1 in the cecal contents of food animals in the United States. Antimicrob Agents Chemother. 2017;61:e02244–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Buess S, Nüesch-Inderbinen M, Stephan R, Zurfluh K. Assessment of animals as a reservoir for colistin resistance: no MCR-1/MCR-2-producing Enterobacteriaceae detected Canadian Journal of Infectious Diseases and Medical Microbiology 19 in Swiss livestock. J Glob Antimicrob Resist. 2017;8:33–4.

    Article  PubMed  Google Scholar 

  83. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI document M100-27th Edition. CLSI, Wayne, 2007.

  84. Satlin MJ, Lewis JS, Weinstein MP, Patel J, Humphries RM, Kahlmeter G, et al. Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) position statements on polymyxin B and colistin clinical breakpoints. Clin Infect Dis. 2020;71:e523–e529.

    CAS  PubMed  Google Scholar 

  85. Liu Y, Liu JH. Monitoring colistin resistance in food animals, an urgent threat. Expert Rev Anti-Infect Ther. 2018;16:443–6.

    Article  CAS  PubMed  Google Scholar 

  86. Doumith M, Godbole G, Ashton P, Larkin L, Dallman T, Day M, et al. Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J Antimicrob Chemother. 2016;71:2300–5.

    Article  CAS  PubMed  Google Scholar 

  87. Barton MH, Parviainen A, Norton N. Polymyxin B protects horses against induced endotoxaemia. vivo Equine Vet J. 2004;36:397–401.

    Article  CAS  PubMed  Google Scholar 

  88. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24:718–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006;6:589–601.

    Article  CAS  PubMed  Google Scholar 

  90. Bakthavatchalam YD, Pragasam AK, Biswas Veeraraghavan B. Polymyxin susceptibility testing, interpretative breakpoints and resistance mechanisms: An update. J Glob Antimicrob Resist. 2018;12:124–36.

    Article  PubMed  Google Scholar 

  91. Wu R, Yi LX, Yu LF, Wang J, Liu Y, Chen X, et al. Fitness Advantage of mcr-1-bearing IncI2 and IncX4 plasmids in vitro. Front Microbiol. 2018;9:331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johura FT, Tasnim J, Barman I, Biswas SR, Jubyda FT, Sultana M, et al. Colistin-resistant Escherichia coli carrying mcr-1 in food, water, hand rinse, and healthy human gut in Bangladesh. Gut Pathog. 2020;12:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luo Q, Wang Y, Xiao Y. Prevalence and transmission of mobilized colistin resistance (mcr) gene in bacteria common to animals and humans. Biosaf Health. 2020;2:71–8.

    Article  Google Scholar 

  94. Nishino Y, Shimojima Y, Suzuki Y, Ida M, Fukui R, Kuroda S, et al. Detection of the mcr‐1 gene in colistin‐resistant Escherichia coli from retail meat in Japan. Microbiol Immunol. 2017;61:554–7.

    Article  CAS  PubMed  Google Scholar 

  95. Caltagirone M, Nucleo E, Spalla M, Zara F, Novazzi F, Marchetti VM, et al. Occurrence of extended spectrum β-lactamases, KPC-type, and MCR-1.2-producing Enterobacteriaceae from wells, river water, and wastewater treatment plants in Oltrepò Pavese area, Northern Italy. Front Microbiol. 2017;8:2232.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fernandes MR, Sellera FP, Esposito F, Sabino CP, Cerdeira L, Lincopan N. Colistin-resistant mcr-1-positive Escherichia coli on public beaches, an infectious threat emerging in recreational waters. Antimicrob Agents Chemother. 2017;61:e00234–17.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother. 2016;71:2066–70.

    Article  PubMed  Google Scholar 

  98. Falgenhauer L, Waezsada SE, Yao Y, Imirzalioglu C, Kasbohrer A, Roesler U, et al. Colistin resistance gene mcr-1 in extended-spectrum β-lactamase-producing and carbapenemase-producing Gram-negative bacteria in Germany. Lancet Infect Dis. 2016;16:282–3.

    Article  CAS  PubMed  Google Scholar 

  99. Richter S, Mckinnell J, Bell D, Uslan DZ, Watson K, Miller LG, et al. Risk Factors for Colistin Resistance; A 10 Year Experience at a Tertiary Medical Center. Open Forum Infect Dis. 2017;4:S149–S150.

    Article  Google Scholar 

  100. Barlaam A, Parisi A, Spinelli E, Caruso M, Taranto PD, Normanno G. Global emergence of colistin-resistant Escherichia coli in food chains and associated food safety implications: A Review. J Food Prot. 2019;82:1440–8.

    Article  CAS  PubMed  Google Scholar 

  101. Kniel KE, Kumar D, Thakur S. Understanding the complexities of food safety using a “One Health” approach. Microbiol Spectr. 2018;6:401–11.

    Article  Google Scholar 

  102. ECDC EEMA. (European Centre for Disease Prevention and Control, European Food Safety Authority, European Medicines Agency). First joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals (JIACRA). EFSA J. 2015;13:4006.

    Article  Google Scholar 

  103. Kaplan DM, Thompson PB Encyclopedia of food and agricultural ethics. Springer Netherlands. 2019.

  104. Robinson TP, Bu DP, Carrique-Mas J, Fevre EM, Gilbert M, Grace D, et al. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg. 2016;110:377–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kempf I, Jouy E, Chauvin C. Colistin use and colistin resistance in bacteria from animals. Int J Antimicrob Agents. 2016;48:598–606.

    Article  CAS  PubMed  Google Scholar 

  106. Joshi PR, Thummeepak R, Paudel S, Acharya M, Pradhan S, Banjara MR, et al. Molecular characterization of colistin-resistant Escherichia coli isolated from chickens: first report from Nepal. Micro Drug Resist. 2019;25:846–54.

    Article  CAS  Google Scholar 

  107. Zhang J, Chen L, Wang J, Yassin AK, Butaye P, Kelly P, et al. Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Sci Rep. 2018b;8:1–9.

    Google Scholar 

  108. Ling Z, Yin W, Li H, Zhang Q, Wang X, Wang Z, et al. Chromosome-mediated mcr-3 variants in Aeromonas veronii from chicken meat. Antimicrob Agents Chemother. 2017;61:e01272–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kong LH, Lei CW, Ma SZ, Jiang W, Liu BH, Wang YX, et al. Various sequence types of Escherichia Coli isolates coharboring bla NDM-5 and mcr-1 genes from a commercial swine farm in China. Antimicrob Agents Chemother. 2017;61:e02167–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hassen B, Saloua B, Abbassi MS, Ruiz Ripa L, Mama OM, Hassen A, et al. mcr-1 encoding colistin resistance in CTX-M-1/CTX-M-15-producing Escherichia coli isolates of bovine and caprine origins in Tunisia. First report of CTX-M-15-ST394/D E. coli from goats. Comp Immunol Microbiol Infect Dis. 2019;67:101366.

    Article  PubMed  Google Scholar 

  111. Maamar E, Alonso CA, Hamzaoui Z, Dakhli N, Abbassi MS, Ferjani S, et al. Emergence of plasmid-mediated colistin-resistance in CMY-2-producing Escherichia coli of lineage ST2197 in a Tunisian poultry farm. Int J Food Microbiol. 2018;269:60–63.

    Article  CAS  PubMed  Google Scholar 

  112. Gelbicova T, Barakova A, Florianova M, Jamborova I, Zelendova M, Pospisilova L, et al. Dissemination and comparison of genetic determinants of mcr-Mediated colistin resistance in Enterobacteriaceae via retailed raw meat products. Front Microbiol. 2019;10:2824.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Thornber K, Verner‐Jeffreys D, Hinchliffe S, Rahman MM, Bass D, Tyler CR. Evaluating antimicrobial resistance in the global shrimp industry. Rev Aquac. 2020;12:966–86.

    Article  PubMed  Google Scholar 

  114. Sobur MA, Ievy S, Haque ZF, Nahar A, Zaman SB, Rahman MdT. Emergence of colistin-resistant Escherichia coli in poultry, house flies, and pond water in Mymensingh, Bangladesh. J Adv Vet Anim Res. 2019;6:50.

    PubMed  PubMed Central  Google Scholar 

  115. TOI Tolerance limits’ to be fixed by food regulator for presence of antibiotics in animal, foods. Available online: https://www.fssai.gov.in/upload/media/FSSAI_News_AntiBiotics_TOI_01_08_2018.pdf (Accessed 12 June 2019).

  116. Davies M, Walsh TR. A colistin crisis in India. Lancet Infect Dis. 2018;18:256–7.

    Article  PubMed  Google Scholar 

  117. Madlen D, Rahul M A game of chicken: how Indian poultry farming Is creating global superbugs. Available online: https://www.thebureauinvestigates.com/stories/2018-01-30/a-game-of-chicken-howindian-poultry-farming-is-creating-global-superbugs (Accessed 22 May 2018).

  118. Waghamare RN, Paturkar AM, Vaidya VM, Zende RJ, Dubal ZN, Dwivedi A, Gaikwad RV. Phenotypic and genotypic drug resistance profile of Salmonella serovars isolated from poultry farm and processing units located in and around Mumbai city, India. Vet World. 2018;11:1682–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Center for Disease Dynamics Economics & Policy. Antibiotic use and resistance in food animals: current policy and recommendations. [Accessed 2 January 2018]. Available from: https://www.cddep.org/wpcontent/uploads/2017/06/india_abx_report-2.pdf.

  120. Livemint. Govt may ban antibiotic colistin used to fatten chicken. Available online: http://www.livemint.com/Industry/yt5eE5hqMLYP1px2d63Q1K/Govt-may-ban-antibiotic-colistin-used-to-fatten-chicken.html (Accessed 20 June 2019).

  121. Kontopidou F, Plachouras D, Papadomichelakis E, Koukos G, Galani I, Poulakou G, et al. Colonization and infection by colistin-resistant Gram-negative bacteria in a cohort of critically ill patients. Clin Microbiol Infect. 2011;17:E9–E11.

    Article  CAS  PubMed  Google Scholar 

  122. Matthaiou DK, Michalopoulos A, Rafailidis PI, Karageorgopoulos DE, Papaioannou V, Ntani G, et al. Risk factors associated with the isolation of colistin-resistant Gram-negative bacteria: a matched case-control study. Crit Care Med. 2008;36:807–11.

    Article  PubMed  Google Scholar 

  123. Yilmaz GR, Dizbay M, Guven T, Pullukcu H, Tasbakan M, Guzel OT, et al. Risk factors for infection with colistin-resistant Gram-negative microorganisms: a multicentre study. J Med Microbiol. 2016;36:216–22.

    Google Scholar 

  124. Kaza P, Mahindroo J, Veeraraghavan B, Mavuduru RS, Mohan B, Taneja N. Evaluation of risk factors for colistin resistance among uropathogenic isolates of Eschericihia coli and Klebsiella pneumonia: a case-control study. J Med Microbiol. 2019;68:837–47.

    Article  CAS  PubMed  Google Scholar 

  125. Zarkotou O, Pournaras S, Voulgari E, Chrysos G, Prekates A, Voutsinas D, et al. Risk factors and outcomes associated with acquisition of colistin-resistant KPC-producing Klebsiella pneumoniae: a matched case-control study. J Clin Microbiol. 2010;48:2271–74.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jayol A, Nordmann P, Brink A, Poirel L. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system. Antimicrob Agents Chemother. 2015;59:2780–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Johnson L, Horsman SR, Charron-Mazenod L, Turnbull AL, Mulcahy H, Surette MG, et al. Extracellular DNA-induced antimicrobial peptide resistance in Salmonella enterica serovar Typhimurium. BMC Microbiol. 2013;13:1–8.

    Article  Google Scholar 

  128. Kang KN, Klein DR, Kazi MI, Guerin F, Cattoir V, Brodbelt JS, et al. Colistin heteroresistance in Enterobacter cloacae is mediated by PmrAB-independent 4-amino- 4-deoxy-l-arabinose addition to lipid A. bioRxiv. 2019;111:1604–16.

    CAS  Google Scholar 

  129. Owusu-Anim D, Kwon DH. Differential role of two-component regulatory systems (phoPQ and pmrAB) in polymyxin B susceptibility of Pseudomonas aeruginosa. Adv Microbiol. 2012;2:1–10.

    Article  Google Scholar 

  130. Cheng YH, Lin TL, Pan YJ, Wang YP, Lin YT, Wang JT. Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother. 2015;59:2909–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Moon K, Gottesman S. A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol Microbiol. 2009;74:1314–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tran AX, Lester ME, Stead CM, Raetz CRH, Maskell DJ, McGrath SC, et al. Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem. 2005;280:28186–94.

    Article  CAS  PubMed  Google Scholar 

  133. Padilla E, Llobet E, Doménech-Sánchez A, Benhoechea JA, Alberti S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2010;54:177–83.

    Article  CAS  PubMed  Google Scholar 

  134. Pelletier MR, Casella LG, Jones JW, Adams MD, Zurawski DV, Hazlett KRO, et al. Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57:4831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fernández L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock REW. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother. 2010;54:3372–82.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Hauhen E, et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother. 2013;57:2204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pham Thanh D, Thanh Tuyen H, Nguyen Thi Nguyen TN, The HC, Wick RR, Thwaites GE, et al. Inducible colistin resistance via a disrupted plasmid-borne mcr-1 gene in a 2008 Vietnamese Shigella sonnei isolate. J Antimicrob Chemother. 2016;71:2314–7.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Eichhorn I, Feudi C, Wang Y, Kaspar H, Febler AT, Lubke Becker A, et al. Identification of novel variants of the colistin resistance gene mcr-3 in Aeromonas spp. from the national resistance monitoring programme GERM-Vet and from diagnostic submissions. J Antimicrob Chemother. 2018;73:1217–21.

    Article  CAS  PubMed  Google Scholar 

  139. Carretto E, Brovarone F, Nardini P, Russello G, Barbarini D, Pongolini S, et al. Detection of mcr-4 positive Salmonella enterica serovar Typhimurium in clinical isolates of human origin, Italy, October to November 2016. Eur Surveill. 2018;23:17–00821.

    Article  Google Scholar 

  140. Guo S, Tay MY, Thu AK, Seow KLG, Zhong Y, Ng LC, et al. Conjugative IncX1 plasmid harboring colistin resistance gene mcr-5.1 in Escherichia coli isolated from chicken rice retailed in Singapore. Antimicrob Agents Chemother. 2019;63:e01043–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lima T, Domingues S, Da Silva GJ. Plasmid-mediated colistin resistance in Salmonella enterica: a review. Microorganisms 2019;7:55.

    Article  CAS  PubMed Central  Google Scholar 

  142. Wang X, Wang Y, Zhou Y, Wang Z, Wang Y, Zhang S, et al. Emergence of colistin resistance gene mcr-8 and its variant in Raoultella ornithinolytica. Front Microbiol. 2019;10:228.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank The Director, Dr Sridevi A Singh, CSIR- Central Food Technological Research Institute, Mysuru, India for facilities and encouragement to write the article. MR would like to thank ICMR, New Delhi for providing ICMR RA fellowship. AM would like to thank DST, New Delhi for the award of WOS-B fellowship. No external funding was used in the preparation of this review article.

Author information

Authors and Affiliations

Authors

Contributions

MR and PMH produce the idea for the review article; MR and AM performed the literature survey, critically revised and drafted the review article.

Corresponding author

Correspondence to Prakash M. Halami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, M., Manjunath, A. & Halami, P.M. Prevalence of polymyxin resistance through the food chain, the global crisis. J Antibiot 75, 185–198 (2022). https://doi.org/10.1038/s41429-022-00502-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00502-0

Search

Quick links