Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

New antioxidants from the culture broth of Coprinopsis echinospora

Abstract

During the search for natural antioxidants from fungal metabolites, three new sesquiterpene derivatives (1-3) have been isolated from the culture broth of Coprinopsis echinospora. Their structures were determined by spectroscopic methods, mainly NMR and mass spectrometric analyses. These compounds exhibited antioxidant activity with IC50 values in the range of 34.4–144.5 μM in the 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging assay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetes. Curr Diabetes Rev. 2011;7:106–25.

    Article  CAS  Google Scholar 

  2. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia reperfusion injury. Pharm Rev. 2001;53:135–59.

    CAS  PubMed  Google Scholar 

  3. Adegbola P, Aderibigbe I, Hammed W, Omotayo T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: a review. Am J Cardiovasc Dis. 2017;7:19–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Furue M, Uchi H, Mitoma C, Hashimoto-Hachiya A, Chiba T, Ito T, et al. Antioxidants for healthy skin: the emerging role of aryl hydrocarbon receptors and nuclear factor-erythroid 2-related factor-2. Nutrients. 2017;9:e223.

    Article  Google Scholar 

  5. Aouacheri O, Saka S, Krim M, Messaadia A, Maidi I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can J Diabetes. 2015;39:44–9.

    Article  Google Scholar 

  6. Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic Biol Med. 2005;39:429–43.

    Article  CAS  Google Scholar 

  7. Nagmoti DM, Khatri DK, Juvekar PR, Juvekar AR. Antioxidant activity free radical-scavenging potential of Pithecellobium dulce benth seed extracts. Free Rad Antiox. 2012;2:37–43.

    Article  CAS  Google Scholar 

  8. Zhong JJ, Xiao JH. Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol. 2009;113:79–150.

    CAS  PubMed  Google Scholar 

  9. Bu’Lock JD, Darbyshire J. Lagopodin metabolites and artefacts in cultures of Coprinus. Phytochemistry. 1976;15:2004.

    Article  Google Scholar 

  10. Pettit GR, Meng Y, Pettit RK, Herald DL, Cichacz ZA, Doubek DL, et al. Antineoplastic agents. 556. Isolation and structure of coprinastatin 1 from Coprinus cinereus. J Nat Prod. 2010;73:388–92.

    Article  CAS  Google Scholar 

  11. Liu Y. Guanacastane-type diterpenoids with cytotoxic activity from Coprinus plicatilis. Bioorg Med Chem Lett. 2012;22:5059–62.

    Article  CAS  Google Scholar 

  12. Ou YX, Li YY, Qian XM, Shen YM. Guanacastane-type diterpenoids from Coprinus radians. Phytochemistry. 2012;78:190–6.

    Article  CAS  Google Scholar 

  13. Liu YJ, Liu Y, Zhang KQ. Xanthothone, a new nematicidal N-compound from Coprinus xanthothrix. Chem Nat Compd. 2008;44:203–5.

    Article  CAS  Google Scholar 

  14. Kettering M, Valdivia C, Sterner O, Anke H, Thines E, Heptemerones A-G. seven novel diterpenoids from Coprinus heptemerus: producing organism, fermentation, isolation and biological activities. J Antibiot. 2005;58:390–6.

    Article  CAS  Google Scholar 

  15. Ki DW, Kim DW, Hwang BS, Lee SW, Seok SJ, Lee IK, et al. New antioxidant sesquiterpenes from a culture broth of Coprinus echinosporus. J Antibiot. 2015;68:351–3.

    Article  CAS  Google Scholar 

  16. Kim JY, Woo EE, Lee IK, Yun BS. New antioxidants from the culture broth of Hericium coralloides. J Antibiot. 2018;71:822–5.

    Article  CAS  Google Scholar 

  17. Mishchenko NP, Vasileva EA, Gerasimenko AV, Grigorchuk VP, Dmitrenok PS, Fedoreyev SA. Isolation and structure determination of echinochrome A oxidative degradation products. Molecules. 2020;25:4778.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2016R1A2B2014430). Authors thank Ms. Ji-Young Oh, Center for University-wide Research Facilities (CURF) at Jeonbuk National University, for NMR measurement. This research also was supported by the “Research Base Construction Fund Support Program” funded by Jeonbuk National University in 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Sik Yun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ki, DW., Kim, DW., Song, JG. et al. New antioxidants from the culture broth of Coprinopsis echinospora. J Antibiot 75, 113–116 (2022). https://doi.org/10.1038/s41429-021-00495-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00495-2

This article is cited by

Search

Quick links