Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Domestication of chemicals attacking metazoan embryogenesis: identification of safe natural products modifying developmental signaling pathways in human

Abstract

Soil microorganisms are rich sources of bioactive natural products. Interspecies interactions are the cues of their production and refine biological activities. These interactions in natural environments include the interplay between microorganisms and Metazoans (animals), such as nematodes, insects, and ticks. Chemical intercellular communication modulators could exert ideal Metazoan-selective toxicity for defending microorganisms. Developmental signaling pathways, such as the Notch, TGF-beta, and Wnt pathways, are intercellular communication networks that contribute to the reproducible formation of complex higher-order Metazoan body structures. Natural modifiers of the developmental signaling pathway are attractive therapeutic seeds for carcinoma and sarcoma treatment. However, these fundamental signaling pathways also play indispensable physiological roles and their perturbation could lead to toxicity, such as defects in stem cell physiology and tissue regeneration processes. In this review, we introduce a screening system that selects developmental signaling inhibitors with wide therapeutic windows using zebrafish embryonic phenotypes and provide examples of microorganism-derived Wnt pathway inhibitors. Moreover, we discuss safety prospects of the developmental signaling inhibitors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Waksman SA. Antagonistic relations of microorganisms. Bacteriol Rev. 1941;5:231–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol. 2006;9:445–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Yim G, Wang HH, Davies J. Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci. 2007;362:1195–200.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Romero D, Traxler MF, Lopez D, Kolter R. Antibiotics as signal molecules. Chem Rev. 2011;111:5492–505.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Yim G, McClure J, Surette MG, Davies JE. Modulation of Salmonella gene expression by subinhibitory concentrations of quinolones. J Antibiot. 2011;64:73–8.

    CAS  Article  Google Scholar 

  6. 6.

    Young IM, Crawford JW. Interactions and self-organization in the soil-microbe complex. Science. 2004;304:1634–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    O’Donnell AG, Young IM, Rushton SP, Shirley MD, Crawford JW. Visualization, modelling and prediction in soil microbiology. Nat Rev Microbiol. 2007;5:689–99.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Quince C, Curtis TP, Sloan WT. The rational exploration of microbial diversity. ISME J. 2008;2:997–1006.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Crawford JW, Harris JA, Ritz K, Young IM. Towards an evolutionary ecology of life in soil. Trends Ecol Evol. 2005;20:81–7.

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Trevors JT. One gram of soil: a microbial biochemical gene library. Antonie Van Leeuwenhoek. 2010;97:99–106.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, et al. Soil nematode abundance and functional group composition at a global scale. Nature. 2019;572:194–8.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. 13.

    Crowther TW, Boddy L, Jones TH. Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia. 2011;167:535–45.

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Ferris H. Contribution of nematodes to the structure and function of the soil food web. J Nematol. 2010;42:63–7.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Grosberg RK, Strathmann RR. The evolution of multicellularity: a minor major transition? Annu Rev Ecol, Evolution, Syst. 2007;38:621–54.

    Article  Google Scholar 

  16. 16.

    Hoffmeyer TT, Burkhardt P. Choanoflagellate models—Monosiga brevicollis and Salpingoeca rosetta. Curr Opin Genet Dev. 2016;39:42–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Fairclough SR, Dayel MJ, King N. Multicellular development in a choanoflagellate. Curr Biol. 2010;20:R875–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Richter DJ, King N. The genomic and cellular foundations of animal origins. Annu Rev Genet. 2013;47:509–37.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Hehenberger E, Tikhonenkov DV, Kolisko M, Del Campo J, Esaulov AS, Mylnikov AP, et al. Novel predators reshape holozoan phylogeny and reveal the presence of a two-component signaling system in the ancestor of animals. Curr Biol. 2017;27:2043–50 e2046.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Sebe-Pedros A, Irimia M, Del Campo J, Parra-Acero H, Russ C, Nusbaum C, et al. Regulated aggregative multicellularity in a close unicellular relative of metazoa. Elife. 2013;2:e01287.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3:756–67.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Schweisguth F. Regulation of Notch signaling activity. Curr Biol. 2004;14:R129–38.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Özbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC. The evolution of extracellular matrix. Mol Biol Cell. 2010;21:4300–5.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    assagué J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14:627–44.

    Google Scholar 

  27. 27.

    Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510:109–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Ryan JF, Pang K, Mullikin JC, Martindale MQ, Baxevanis AD, Program NCS. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. EvoDevo. 2010;1:9.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Loh Kyle M, van Amerongen R, Nusse R. Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Developmental Cell. 2016;38:643–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, et al. Wnt and TGF-β Expression in the Sponge Amphimedon queenslandica and the Origin of Metazoan Embryonic Patterning. PLOS ONE. 2007;2:e1031.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, et al. The Trichoplax genome and the nature of placozoans. Nature. 2008;454:955–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature. 2000;407:186–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, et al. An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation. Nature. 2003;426:446–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Developmental Cell. 2006;11:791–801.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423:448–52.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. Structural basis of Wnt recognition by frizzled. Science. 2012;337:59–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Alexandre C, Baena-Lopez A, Vincent J-P. Patterning and growth control by membrane-tethered Wingless. Nature. 2014;505:180–5.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530:340–3.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Goldstein B, Takeshita H, Mizumoto K, Sawa H. Wnt signals can function as positional cues in establishing cell polarity. Developmental Cell. 2006;10:391–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Habib SJ, Chen B-C, Tsai F-C, Anastassiadis K, Meyer T, Betzig E, et al. A localized Wnt signal orients asymmetric stem cell division in vitro. Science. 2013;339:1445–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha Y-H, et al. Wnt signaling and an APC-related Gene specify endoderm in Early C. elegans embryos. Cell. 1997;90:707–16. 424

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Holstein TW The evolution of the Wnt pathway. Cold Spring Harbor Perspect Biol. 2012;4:a007922.

  43. 43.

    Holstein TW, Watanabe H, Özbek S Chapter six - Signaling pathways and axis formation in the lower Metazoa. In: Birchmeier C (ed). Current topics in developmental biology, vol. 97. Cambridge: Academic Press; 2011. p 137–77.

  44. 44.

    Niehrs C. On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development. 2010;137:845–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body axis. Cell. 2009;139:1056–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of beta-catenin. Proc Natl Acad Sci USA. 2008;105:8032–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Kofron M, Birsoy B, Houston D, Tao Q, Wylie C, Heasman J. Wnt11/β-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin. Development. 2007;134:503–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Tolwinski NS, Wehrli M, Rives A, Erdeniz N, DiNardo S, Wieschaus E. Wg/Wnt signal Can Be transmitted through arrow/LRP5,6 and axin independently of Zw3/Gsk3β activity. Developmental Cell. 2003;4:407–18.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem. 1999;274:10681–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Wu J, Jenny A, Mirkovic I, Mlodzik M. Frizzled–Dishevelled signaling specificity outcome can be modulated by Diego in Drosophila. Mechanisms Dev. 2008;125:30–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Habas R, Kato Y, He X. Wnt/frizzled activation of rho regulates vertebrate gastrulation and requires a novel formin homology protein Daam1. Cell. 2001;107:843–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Liu W, Sato A, Khadka D, Bharti R, Diaz H, Runnels LW, et al. Mechanism of activation 452 of the Formin protein Daam1. Proc Natl Acad Sci. 2008;105:210–5. 453

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Strutt DI, Weber U, Mlodzik M. The role of RhoA in tissue polarity and Frizzled signalling. Nature. 1997;387:292–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Winter CG, Wang B, Ballew A, Royou A, Karess R, Axelrod JD, et al. Drosophila Rho-associated kinase (Drok) links frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell. 2001;105:81–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol. 2017;18:375–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Boutros M, Paricio N, Strutt DI, Mlodzik M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell. 1998;94:109–18.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10:468–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Polakis P. Drugging Wnt signalling in cancer. The. EMBO J. 2012;31:2737–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Zimmerman ZF, Moon RT, Chien AJ Targeting Wnt pathways in disease. Cold Spring Harbor Perspect Biol. 2012;4:a008086.

  60. 60.

    Herr P, Hausmann G, Basler K. WNT secretion and signalling in human disease. Trends Mol Med. 2012;18:483–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Kim Y, Jeong J, Choi D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp Mol Med. 2020;52:213–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13:513–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA. 2013;110:20224–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Nishiya N, Oku Y, Kumagai Y, Sato Y, Yamaguchi E, Sasaki A, et al. A zebrafish chemical suppressor screening identifies small molecule inhibitors of the Wnt/beta-catenin pathway. Chem Biol. 2014;21:530–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Metzstein MM, Stanfield GM, Horvitz HR. Genetics of programmed cell death in C. 481 elegans: past, present and future. Trends Genet. 1998;14:410–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287:795–801.

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Felsenfeld AL. Defining the boundaries of zebrafish developmental genetics. Nat Genet. 1996;14:258–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Simon MA, Dodson GS, Rubin GM. An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell. 1993;73:169–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Simon MA, Bowtell DD, Dodson GS, Laverty TR, Rubin GM. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell. 1991;67:701–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Karim FD, Chang HC, Therrien M, Wassarman DA, Laverty T, Rubin GM. A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics. 1996;143:315–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253:661–5.

    CAS  Article  Google Scholar 

  73. 73.

    Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M, et al. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol. 2003;10:1255–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Heisenberg CP, Brand M, Jiang YJ, Warga RM, Beuchle D, van Eeden FJ, et al. Genes involved in forebrain development in the zebrafish, Danio rerio. Development. 1996;123:191–203.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Heisenberg CP, Houart C, Take-Uchi M, Rauch GJ, Young N, Coutinho P, et al. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev. 2001;15:1427–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC, et al. Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature. 2000;407:913–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    van de Water S, van de Wetering M, Joore J, Esseling J, Bink R, Clevers H, et al. Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. Development. 2001;128:3877–88.

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Stachel SE, Grunwald DJ, Myers PZ. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development. 1993;117:1261–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Atilla-Gokcumen GE, Williams DS, Bregman H, Pagano N, Meggers E. Organometallic compounds with biological activity: a very selective and highly potent cellular inhibitor for glycogen synthase kinase 3. Chembiochem. 2006;7:1443–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Yonezawa H, Ogawa M, Katayama S, Shimizu Y, Omori N, Oku Y, et al. Clotrimazole inhibits the Wnt/β-catenin pathway by activating two eIF2α kinases: the heme-regulated translational inhibitor and the double-stranded RNA-induced protein kinase. Biochem Biophys Res. Commun. 2018;506:183–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Yonezawa H, Sugawara A, Sakyo T, Uehara Y, Kawano T, Nishiya N. IMU1003, an atrarate derivative, inhibits Wnt/β-catenin signaling. Biochem Biophys Res. Commun. 2020;532:440–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat Chem Biol. 2010;6:829–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Ueno T, Takahashi H, Oda M, Mizunuma M, Yokoyama A, Goto Y, et al. Inhibition of human telomerase by rubromycins: implication of spiroketal system of the compounds as an active moiety. Biochemistry. 2000;39:5995–6002.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Park J-I, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009;460:66–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Ōmura S. Ivermectin: 25 years and still going strong. Int J Antimicrobial Agents. 2008;31:91–8.

    Article  CAS  Google Scholar 

  87. 87.

    Lynagh T, Lynch J Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Front Mol Neurosci (Review). 2012;5:60.

  88. 88.

    Arena JP, Liu KK, Paress PS, Schaeffer JM, Cully DF. Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Brain Res. Mol Brain Res. 1992;15:339–48.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LH, Schaeffer JM, et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature. 1994;371:707–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Melotti A, Mas C, Kuciak M, Lorente-Trigos A, Borges I, Ruiz i Altaba A. The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol Med. 2014;6:1263–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Dou Q, Chen H-N, Wang K, Yuan K, Lei Y, Li K, et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in Breast Cancer. Cancer Res. 2016;76:4457–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Liu Y, Fang S, Sun Q, Liu B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res. Commun. 2016;480:415–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Diao H, Cheng N, Zhao Y, Xu H, Dong H, Thamm DH, et al. Ivermectin inhibits canine mammary tumor growth by regulating cell cycle progression and WNT signaling. BMC Vet Res. 2019;15:276.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. 94.

    Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68:3077–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Weinstein IB. Addiction to oncogenes–the achilles heal of cancer. Science. 2002;297:63–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank students, colleagues, and collaborators for their dedicated work. We extend our special thanks to Dr. Hitoshi Okamoto for the guidance in zebrafish phenotypic analysis, Dr. Yoshimasa Uehara for the guidance in chemical screenings, Dr. Tomikazu Kawano for the chemical synthesis. The research in the laboratory of the authors was supported by the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS KAKENHI grant Numbers JP18K07329, JP25460069, JP22790082) and the Takeda Science Foundation. Honami Yonezawa was supported by the Nagai Memorial Research Scholarship from the Pharmaceutical 328 Society of Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Nishiya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishiya, N., Yonezawa, H. Domestication of chemicals attacking metazoan embryogenesis: identification of safe natural products modifying developmental signaling pathways in human. J Antibiot 74, 651–659 (2021). https://doi.org/10.1038/s41429-021-00461-y

Download citation

Search

Quick links