Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic bactericidal activities of tobramycin with ciprofloxacin and azithromycin against Klebsiella pneumoniae

Abstract

Trans-translation is a unique bacterial ribosome rescue system that plays important roles in the tolerance to environmental stresses. It is composed of an ssrA-encoded tmRNA and a protein SmpB. In this study, we examined the role of trans-translation in antibiotic tolerance in Klebsiella pneumoniae and explored whether the inhibition of this mechanism could enhance the bactericidal activities of antibiotics. We found that deletion of the ssrA gene reduced the survival of K. pneumoniae after treatment with kanamycin, tobramycin, azithromycin, and ciprofloxacin, indicating an important role of the trans-translation in bacterial antibiotic tolerance. By using a modified ssrA gene with a 6Ă—His tag we demonstrated that tobramycin suppressed the azithromycin and ciprofloxacin-elicited activation of trans-translation. The results were further confirmed with a trans-translation reporter system that is composed of a normal mCherry gene and a gfp gene without the stop codon. Compared to each individual antibiotic, combination of tobramycin with azithromycin or ciprofloxacin synergistically enhanced the killing activities against planktonic K. pneumoniae cells and improved bacterial clearance in a murine cutaneous abscess infection model. In addition, the combination of tobramycin and ciprofloxacin increased the bactericidal activities against biofilm-associated cells. Overall, our results suggest that the combination of tobramycin with azithromycin or ciprofloxacin is a promising strategy in combating K. pneumoniae infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jensen TS, Opstrup KV, Christiansen G, Rasmussen PV, Thomsen ME, Justesen DL, et al. Complement mediated Klebsiella pneumoniae capsule changes. Microbes Infect. 2020;22:19–30.

    Article  Google Scholar 

  2. Kobayashi SD, DeLeo FR. Re-evaluating the potential of immunoprophylaxis and/or immunotherapy for infections caused by multidrug resistant Klebsiella pneumoniae. Future Microbiol. 2018;13:1343–6.

    Article  CAS  Google Scholar 

  3. Bassetti M, Righi E, Carnelutti A, Graziano E, Russo A. Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev Anti Infect Ther. 2018;16:749–61.

    Article  CAS  Google Scholar 

  4. Himeno H, Nameki N, Kurita D, Muto A, Abo T. Ribosome rescue systems in bacteria. Biochimie. 2015;114:102–12.

    Article  CAS  Google Scholar 

  5. Huter P, MĂ¼ller C, Arenz S, Beckert B, Wilson DN. Structural basis for ribosome rescue in bacteria. Trends biochemical Sci. 2017;42:669–80.

    Article  CAS  Google Scholar 

  6. Keiler KC. Mechanisms of ribosome rescue in bacteria. Nat Rev Microbiol. 2015;13:285–97.

    Article  CAS  Google Scholar 

  7. Dulebohn D, Choy J, Sundermeier T, Okan N, Karzai AW. Trans-translation: the tmRNA-mediated surveillance mechanism for ribosome rescue, directed protein degradation, and nonstop mRNA decay. Biochemistry. 2007;46:4681–93.

    Article  CAS  Google Scholar 

  8. Ramadoss NS, Zhou X, Keiler KC. TmRNA is essential in Shigella flexneri. PloS One. 2013;8:e57537.

    Article  CAS  Google Scholar 

  9. Li J, Ji L, Shi W, Xie J, Zhang Y. Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. J Antimicrob Chemother. 2013;68:2477–81.

    Article  CAS  Google Scholar 

  10. Luidalepp H, Hallier M, Felden B, Tenson T. TmRNA decreases the bactericidal activity of aminoglycosides and the susceptibility to inhibitors of cell wall synthesis. RNA Biol. 2005;2:70–4.

    Article  CAS  Google Scholar 

  11. Brunel R, Charpentier X. Trans-translation is essential in the human pathogen Legionella pneumophila. Sci Rep. 2016;6:37935.

    Article  CAS  Google Scholar 

  12. Brito L, Wilton J, FerrĂ¡ndiz MJ, GĂ³mez-Sanz A, de la Campa AG, Amblar M. Absence of tmRNA has a protective effect against fluoroquinolones in Streptococcus pneumoniae. Front Microbiol. 2016;7:2164.

    PubMed  Google Scholar 

  13. Alumasa JN, Goralski TDP, Keiler KC. Tetrazole-based trans-translation inhibitors kill bacillus anthracis spores to protect host cells. Antimicrob Agents Chemother. 2017;61:e01199–17.

    Article  CAS  Google Scholar 

  14. Alumasa JN, Manzanillo PS, Peterson ND, Lundrigan T, Baughn AD, Cox JS, et al. Ribosome rescue inhibitors kill actively growing and nonreplicating persister Mycobacterium tuberculosis Cells. ACS Infect Dis. 2017;3:634–44.

    Article  CAS  Google Scholar 

  15. Goralski TD, Dewan KK, Alumasa JN, Avanzato V, Place DE, Markley RL, et al. Inhibitors of ribosome rescue arrest growth of Francisella tularensis at all stages of intracellular replication. Antimicrob Agents Chemother. 2016;60:3276–82.

    Article  CAS  Google Scholar 

  16. Ramadoss NS, Alumasa JN, Cheng L, Wang Y, Li S, Chambers BS, et al. Small molecule inhibitors of trans-translation have broad-spectrum antibiotic activity. Proc Natl Acad Sci USA. 2013;110:10282–7.

    Article  CAS  Google Scholar 

  17. Huang Y, Alumasa JN, Callaghan LT, Baugh RS, Rae CD, Keiler KC, et al. A small-molecule inhibitor of trans-translation synergistically interacts with cathelicidin antimicrobial peptides to impair survival of Staphylococcus aureus. Antimicrob Agents Chemother. 2019;63:e02362–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren H, He X, Zou X, Wang G, Li S, Wu Y. Gradual increase in antibiotic concentration affects persistence of Klebsiella pneumoniae. J Antimicrob Chemother. 2015;70:3267–72.

    CAS  PubMed  Google Scholar 

  19. Schulz M, Schmoldt A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Die Pharmazie. 2003;58:447–74.

    CAS  PubMed  Google Scholar 

  20. Corvaisier S, Bordeau V, Felden B. Inhibition of transfer messenger RNA aminoacylation and trans-translation by aminoglycoside antibiotics. J Biol Chem. 2003;278:14788–97.

    Article  CAS  Google Scholar 

  21. Roche ED, Sauer RT. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J Biol Chem. 2001;276:28509–15.

    Article  CAS  Google Scholar 

  22. Ren H, Liu Y, Zhou J, Long Y, Liu C, Xia B, et al. Combination of azithromycin and gentamicin for efficient treatment of Pseudomonas aeruginosa infections. J Infect Dis. 2019;220:1667–78.

    Article  CAS  Google Scholar 

  23. Chung PY. The emerging problems of Klebsiella pneumoniae infections: carbapenem resistance and biofilm formation. FEMS Microbiol Lett. 2016;363:fnw219.

    Article  Google Scholar 

  24. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, et al. Tackling antibiotic resistance. Nat Rev Microbiol. 2011;9:894–6.

    Article  CAS  Google Scholar 

  25. Spellberg B, Shlaes D. Prioritized current unmet needs for antibacterial therapies. Clin Pharmacol Therapeutics. 2014;96:151–3.

    Article  CAS  Google Scholar 

  26. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517:455–9.

    Article  CAS  Google Scholar 

  27. Pletzer D, Mansour SC, Hancock REW. Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. PLoS Pathog. 2018;14:e1007084.

    Article  Google Scholar 

  28. Pletzer D, Mansour SC, Wuerth K, Rahanjam N, Hancock RE. New mouse model for chronic infections by gram-negative bacteria enabling the study of anti-infective efficacy and host-microbe interactions. mBio. 2017;8:e00140–17.

    Article  CAS  Google Scholar 

  29. Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, et al. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-tesistant gram-negative bacterial pathogens. EBioMedicine. 2015;2:690–8.

    Article  Google Scholar 

  30. Goering RV, Sanders CC, Sanders WE Jr. Comparison of 5-episisomicin (Sch 22591), gentamicin, sisomicin, and tobramycin in treatment of experimental Pseudomonas infections in mice. Antimicrob Agents Chemother. 1978;14:824–8.

    Article  CAS  Google Scholar 

  31. Yagel SK, Barrett JF, Amaratunga DJ, Frosco MB. In vivo oral efficacy of levofloxacin for treatment of systemic Pseudomonas aeruginosa infections in a murine model of septicemia. Antimicrob Agents Chemother. 1996;40:2894–7.

    Article  CAS  Google Scholar 

  32. LeBel M. Ciprofloxacin: chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions. Pharmacotherapy. 1988;8:3–33.

    Article  CAS  Google Scholar 

  33. Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, et al. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding. J Biol Chem. 2014;289:12300–12.

    Article  CAS  Google Scholar 

  34. Jeong KS, Ahn J, Khodursky AB. Spatial patterns of transcriptional activity in the chromosome of Escherichia coli. Genome Biol. 2004;5:R86.

    Article  Google Scholar 

  35. Sutormin D, Rubanova N, Logacheva M, Ghilarov D, Severinov K. Single-nucleotide-resolution mapping of DNA gyrase cleavage sites across the Escherichia coli genome. Nucleic Acids Res. 2019;47:1373–88.

    Article  CAS  Google Scholar 

  36. Mayer-Hamblett N, Retsch-Bogart G, Kloster M, Accurso F, Rosenfeld M, Albers G, et al. Azithromycin for early pseudomonas infection in Cystic fibrosis. The OPTIMIZE Randomized Trial. Am J Respir Crit Care Med. 2018;198:1177–87.

    Article  CAS  Google Scholar 

  37. Mogayzel PJ Jr., Naureckas ET, Robinson KA, Mueller G, Hadjiliadis D, Hoag JB, et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2013;187:680–9.

    Article  Google Scholar 

  38. Wang Y, Wang S, Chen W, Song L, Zhang Y, Shen Z, et al. CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84:e01834–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Leonard SN, Kaatz GW, Rucker LR, Rybak MJ. Synergy between gemifloxacin and trimethoprim/sulfamethoxazole against community-associated methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2008;62:1305–10.

    Article  CAS  Google Scholar 

  40. Rivardo F, Martinotti MG, Turner RJ, Ceri H. Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm. Int J Antimicrob Agents. 2011;37:324–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Robert E. W. Hancock at the Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia for the teaching of the mouse cutaneous abscess model. We would like to thank Dr. Quanjiang Ji at the School of Physical Science and Technology, ShanghaiTech University for kindly providing the K. pneumoniae CRISPR system. This work was supported by National Key Research and Development Project of China (2021YFE0101700, 2017YFE0125600), National Science Foundation of China (31970680, 31970179 and 31870130), Fundamental Research Funds for the Central Universities, Nankai University (63201093), and the Tianjin Municipal Science and Technology Commission (19JCYBJC24700). The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Author contributions

W.W., H.R., and D.P. conceived and designed the experiments. H.R., Y.Z., J.Z., C.X., Z.F., X.P., and S.L. performed the experiments. H.R., Y.J., F.B., Z.C., D.P., and W.W. analyzed the data. Y.Z., S.C., J.X., P.W., Yh.Z., G.Z., H.L. provided and characterized the clinical isolates. H.R., D.P., and W.W. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihui Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical statement

The animal experiments were conducted following the national guidelines on the use of animals in research. The protocol was approved by the Animal Care and Use Committee of the College of Life Sciences, Nankai University (permission number: NK-04-2012).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Zhang, J., Zhou, J. et al. Synergistic bactericidal activities of tobramycin with ciprofloxacin and azithromycin against Klebsiella pneumoniae. J Antibiot 74, 528–537 (2021). https://doi.org/10.1038/s41429-021-00427-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00427-0

This article is cited by

Search

Quick links