Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deciphering colistin heteroresistance in Acinetobacter baumannii clinical isolates from Wenzhou, China

Abstract

This study aimed to investigate the characteristics and mechanisms responsible for heteroresistance to colistin in Acinetobactor baumannii clinical isolates from a Chinese teaching hospital. Five hundred and seventy-six nonduplicate A. baumannii clinical isolates isolated from 2014 to 2015 were tested. Colistin heteroresistance was determined using population analysis profiles (PAPs). Susceptibility testing was conducted using the broth microdilution method (BMD). The ability to form biofilm formation was determined using 96-well flat bottom microtiter plates. Time-kill assays were also conducted. PCR and sequencing were used to detect the presence of resistant genes. Expression levels of efflux pump genes were determined by qRT-PCR. LPS analysis was conducted by SDS-PAGE. Lipid A characteristic were determined via MALDI-TOF MS. Nine colistin heteroresistant A. baumannii clinical isolates which were selected by PAPs, exhibited multidrug-resistant phenotypes. The microplate biofilm assay revealed that colistin heteroresistant A. baumannii clinical isolates had weaker biofilm formation capacity than A. baumannii ATCC19606. Colistin-heteroresistant A. baumannii isolates exhibited regrowth after 12 h at 0.5 × MIC, 1 × MIC, and 2 × MIC. The results of PCR and sequencing revealed mutations of lpxACD in some colistin heteroresistant A. baumannii isolates. qRT-PCR also showed that the expressions of efflux pump genes were upregulated in some of the heteroresistant isolates. Our study was the first report of colistin heteroresistant A. baumannii clinical isolates in China. The transition of colistin heteroresistance to resistance should be of concern in future clinical surveillance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hung KH, Wang MC, Huang AH, Yan JJ, Wu JJ. Heteroresistance to cephalosporins and penicillins in Acinetobacter baumannii. J Clin Microbiol. 2012;50:721–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu X, Li R, Zheng Z, Chen K, Xie M, Chan EW, et al. Molecular characterization of Escherichia coli Isolates Carrying mcr-1, fosA3, and extended-spectrum-beta-lactamase genes from food samples in China. Antimicrob Agents Chemother. 2017;61:1–5.

  3. Wang Y, Tian GB, Zhang R, Shen Y, Tyrrell JM, Huang X, et al. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infect Dis. 2017;17:390–9.

    CAS  PubMed  Google Scholar 

  4. Caniaux I, van Belkum A, Zambardi G, Poirel L, Gros MF. MCR: modern colistin resistance. Eur J Clin Microbiol Infect Dis. 2017;36:415–20.

    CAS  PubMed  Google Scholar 

  5. Cai Y, Lee W, Kwa AL. Polymyxin B versus colistin: an update. Expert Rev Anti Infect Ther. 2015;13:1481–97.

    CAS  PubMed  Google Scholar 

  6. Quan J, Li X, Chen Y, Jiang Y, Zhou Z, Zhang H, et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. Lancet Infect Dis. 2017;17:400–10.

    CAS  PubMed  Google Scholar 

  7. Dahdouh E, Gomez-Gil R, Sanz S, Gonzalez-Zorn B, Daoud Z, Mingorance J, et al. A novel mutation in pmrB mediates colistin resistance during therapy of Acinetobacter baumannii. Int J Antimicrob Agents. 2017;49:727–33.

    CAS  PubMed  Google Scholar 

  8. Ni W, Li Y, Guan J, Zhao J, Cui J, Wang R, et al. Effects of efflux pump inhibitors on colistin resistance in multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother. 2016;60:3215–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Park YK, Ko KS. Effect of carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on killing Acinetobacter baumannii by colistin. J Microbiol. 2015;53:53–9.

    CAS  PubMed  Google Scholar 

  10. Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50:2946–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moosavian M, Shoja S, Nashibi R, Ebrahimi N, Tabatabaiefar MA, Rostami S, et al. Post Neurosurgical Meningitis due to Colistin Heteroresistant Acinetobacter baumannii. Jundishapur J Microbiol. 2014;7:e12287.

    PubMed  PubMed Central  Google Scholar 

  12. Yau W, Owen RJ, Poudyal A, Bell JM, Turnidge JD, Yu HH, et al. Colistin hetero-resistance in multidrug-resistant Acinetobacter baumannii clinical isolates from the Western Pacific region in the SENTRY antimicrobial surveillance programme. J Infect. 2009;58:138–44.

    PubMed  Google Scholar 

  13. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40:175–9.

    CAS  PubMed  Google Scholar 

  14. Tsai CM, Frasch CE. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982;119:115–9.

    CAS  PubMed  Google Scholar 

  15. Hankins JV, Madsen JA, Needham BD, Brodbelt JS, Trent MS. The outer membrane of Gram-negative bacteria: lipid A isolation and characterization. Methods Mol Biol. 2013;966:239–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang X, Yu L, Chen X, Zhi C, Yao X, Liu Y, et al. High prevalence of colistin resistance and mcr-1 gene in Escherichia coli isolated from food animals in China. Front Microbiol. 2017;8:562.

    PubMed  PubMed Central  Google Scholar 

  17. Barin J, Martins AF, Heineck BL, Barth AL, Zavascki AP. Hetero- and adaptive resistance to polymyxin B in OXA-23-producing carbapenem-resistant Acinetobacter baumannii isolates. Ann Clin Microbiol Antimicrob. 2013;12:15.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hawley JS, Murray CK, Jorgensen JH. Colistin heteroresistance in acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother. 2008;52:351–2.

    CAS  PubMed  Google Scholar 

  19. Lo-Ten-Foe JR, de Smet AM, Diederen BM, Kluytmans JA, van Keulen PH. Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrob Agents Chemother. 2007;51:3726–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Srinivas P, Rivard K. Polymyxin resistance in Gram-negative pathogens. Curr Infect Dis Rep. 2017;19:38.

    PubMed  Google Scholar 

  21. Sato Y, Unno Y, Ubagai T, Ono Y. Sub-minimum inhibitory concentrations of colistin and polymyxin B promote Acinetobacter baumannii biofilm formation. PLoS ONE. 2018;13:e0194556.

    PubMed  PubMed Central  Google Scholar 

  22. Han X, Li Q, Shen L, Hu D, Qu Y. Correlation between the biofilm-forming ability, biofilm-related genes and antimicrobial resistance of Acinetobacter baumannii. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014;26:639–43.

    PubMed  Google Scholar 

  23. Silva A, Sousa AM, Alves D, Lourenco A, Pereira MO. Heteroresistance to colistin in Klebsiella pneumoniae is triggered by small colony variants sub-populations within biofilms. Pathog Dis. 2016;74:1–8.

  24. Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother. 2012;67:1607–15.

    CAS  PubMed  Google Scholar 

  25. Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother. 2009;53:3628–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mavroidi A, Katsiari M, Palla E, Likousi S, Roussou Z, Nikolaou C, et al. Investigation of extensively drug-resistant blaOXA-23-producing Acinetobacter baumannii spread in a Greek hospital. Microb Drug Resist. 2017;23:488–93.

    CAS  PubMed  Google Scholar 

  27. Pelletier MR, Casella LG, Jones JW, Adams MD, Zurawski DV, Hazlett KR, et al. Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57:4831–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Leung LM, McElheny CL, Gardner FM, Chandler CE, Bowler SL, Mettus RT, et al. A prospective study of Acinetobacter baumannii complex isolates and colistin susceptibility monitoring by mass spectrometry of microbial membrane glycolipids. J Clin Microbiol. 2019;57:1–9.

  29. Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54:4971–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Moffatt JH, Harper M, Adler B, Nation RL, Li J, Boyce JD. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55:3022–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol. 2019;17:479–96.

    CAS  PubMed  Google Scholar 

  32. Hjort K, Nicoloff H, Andersson DI. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol Microbiol. 2016;102:274–89.

    CAS  PubMed  Google Scholar 

  33. El-Halfawy OM, Valvano MA. Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells. PLoS ONE. 2013;8:e68874.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin J, Xu CQ, Fang RC, Cao JM, Zhang XC, Zhao YJ, et al. Resistance and Heteroresistance to Colistin in Pseudomonas aeruginosa Isolates from Wenzhou, China. Antimicrob Agents Chemother. 2019;63:1–12.

Download references

Acknowledgements

This work was supported by the Planned Science and Technology Project of Wenzhou (no. Y20170204); and the Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents [no. (2012)241].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianming Cao or Tieli Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Lin, J., Lu, H. et al. Deciphering colistin heteroresistance in Acinetobacter baumannii clinical isolates from Wenzhou, China. J Antibiot 73, 463–470 (2020). https://doi.org/10.1038/s41429-020-0289-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0289-2

Search

Quick links