Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Investigation of antibiotic resistance determinants and virulence factors of uropathogenic Escherichia coli

Abstract

Multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) are prevalent throughout the world resulting in a major public health burden. In this research, we isolated and identified 28 MDR UPEC from one university hospital in China, investigated MDR and pathogenic mechanisms by PCR, including 55 antibiotic resistance determinants (ARDs) genes, 13 genetic markers of mobile genetic elements (MGEs) and 6 virulence factors (VFs) genes. In these isolates, we identified 23 ARDs genes and 6 genetic markers of MGEs that played a key role in MDR phenotypes. In addition, we found 2 VFs genes, hofQ and ompT, which could be associated with pathogenicity and invasiveness of these strains in urinary tract infections (UTIs).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Ronald AR, Nicolle LE, Stamm E, Krieger J, Warren J, Schaeffer A, Naber KG, Hooton TM, Johnson J, Chambers S, Andriole V. Urinary tract infection in adults: research priorities and strategies. Int J Antimicrob Agents. 2001;17:343–8.

    Article  CAS  Google Scholar 

  2. Totsika M, Moriel DG, Idris A, Rogers BA, Wurpel DJ, Phan MD, Paterson DL, Schembri MA. Uropathogenic Escherichia coli mediated urinary tract infection. Curr Drug Targets. 2012;13:1386–99.

    Article  CAS  Google Scholar 

  3. Stamm WE, Norrby SR. Urinary tract infections: disease panorama and challenges. J Infect Dis. 2001;183(Suppl. 1):S1–4.

    Article  Google Scholar 

  4. Barber AE, Norton JP, Spivak AM, Mulvey MA. Urinary tract infections: current and emerging management strategies. Clin Infect Dis. 2013;57:719–24.

    Article  Google Scholar 

  5. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010;7:653–60.

    Article  Google Scholar 

  6. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13:269–84.

    Article  CAS  Google Scholar 

  7. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med. 2002;113(Suppl. 1A):5s–13s.

    Article  Google Scholar 

  8. Dehbanipour R, Rastaghi S, Sedighi M, Maleki N, Faghri J. High prevalence of multidrug-resistance uropathogenic Escherichia coli strains, Isfahan, Iran. J Nat Sci Biol Med. 2016;7:22–6.

    Article  CAS  Google Scholar 

  9. Ochoa SA, Cruz-Córdova A, Luna-Pineda VM, Reyes-Grajeda JP, Cázares-Domínguez V, Escalona G, Sepúlveda-González ME, López-Montiel F, Arellano-Galindo J, López-Martínez B, Parra-Ortega I, Giono-Cerezo S, Hernández-Castro R, de la Rosa-Zamboni D, Xicohtencatl-Cortes J. Multidrug- and extensively drug-resistant uropathogenic Escherichia coli clinical strains: phylogenetic groups widely associated with integrons maintain high genetic diversity. Front Microbiol. 2016;7:2042.

    Article  Google Scholar 

  10. Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Micro Physiol. 2014;65:337–72.

    Article  Google Scholar 

  11. Zowawi HM, Harris PN, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, Williamson DA, Paterson DL. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol. 2015;12:570–84.

    Article  CAS  Google Scholar 

  12. Gautam V, Singhal L, Arora S, Jha C, Ray P. Reliability of Kirby-Bauer disk diffusion method for detecting carbapenem resistance in Acinetobacter baumannii-calcoaceticus complex isolates. Antimicrob Agents Chemother. 2013;57:2003–4.

    Article  CAS  Google Scholar 

  13. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: twenty-eighth informational supplement. Document M100-S28. Wayne, PA: CLSI. 2018.

  14. Chen JM, Sun YX, Chen JW, Liu S, Yu JM, Shen CJ, Sun XD, Peng D. Panorama phylogenetic diversity and distribution of type A influenza viruses based on their six internal gene sequences. Virol J. 2009;6:137.

    Article  Google Scholar 

  15. Díez-Aguilar M, Conejo MC, Morosini MI, Palop NT, Gimeno C, Cantón R, Pascual Á. Susceptibility testing and detection of β-lactam resistance mechanisms in Enterobacteriaceae: a multicentre national proficiency study. Int J Antimicrob Agents. 2018;51:612–9.

    Article  Google Scholar 

  16. Jaffe A, Chabbert YA, Semonin O. Role of porin proteins OmpF and OmpC in the permeation of β-lactams. Antimicrob Agents Chemother. 1982;22:942–8.

    Article  CAS  Google Scholar 

  17. Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother. 1999;43:727–37.

    Article  CAS  Google Scholar 

  18. Xia Q, Wang H, Zhang A, Wang T, Zhang Y. Prevalence of 16S rRNA methylase conferring high-level aminoglycoside resistance in Escherichia coli in China. Int J Antimicrob Agents. 2011;37:387–8.

    Article  CAS  Google Scholar 

  19. Shigemura K, Tanaka K, Yamamichi F, Shirakawa T, Miyake H, Fujisawa M. Does mutation in gyrA and/or parC or efflux pump expression play the main role in fluoroquinolone resistance in Escherichia coli urinary tract infections? A statistical analysis study. Int J Antimicrob Agents. 2012;40:516–20.

    Article  CAS  Google Scholar 

  20. Jesse TW, Englen MD, Pittenger-Alley LG, Fedorka-Cray PJ. Two distinct mutations in gyrA lead to ciprofloxacin and nalidixic acid resistance in Campylobacter coli and Campylobacter jejuni isolated from chickens and beef cattle. J Appl Microbiol. 2006;100:682–8.

    Article  CAS  Google Scholar 

  21. Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 2005;56:20–51.

    Article  CAS  Google Scholar 

  22. Tu J, Qi K, Song X, Xue T, Ji H, Shao Y, Liu H, Zhou X, Zhu L. Horizontal transfer and functional evaluation of high pathogenicity islands in Avian Escherichia coli. Pol J Vet Sci. 2017;20:395–402.

    Article  CAS  Google Scholar 

  23. Ahmed N, Dobrindt U, Hacker J, Hasnain SE. Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol. 2008;6:387–94.

    Article  CAS  Google Scholar 

  24. Sun D, Zhang X, Wang L, Prudhomme M, Xie Z, Martin B, Claverys JP. Transforming DNA uptake gene orthologs do not mediate spontaneous plasmid transformation in Escherichia coli. J Bacteriol. 2009;191:713–9.

    Article  CAS  Google Scholar 

  25. Kanamaru S, Kurazono H, Ishitoya S, Terai A, Habuchi T, Nakano M, Ogawa O, Yamamoto S. Distribution and genetic association of putative uropathogenic virulence factors iroN, iha, kpsMT, ompT and usp in Escherichia coli isolated from urinary tract infections in Japan. J Urol. 2003;170:2490–3.

    Article  Google Scholar 

  26. Marrs CF, Zhang LX, Tallman P, Manning SD, Somsel P, Raz P, Colodner R, Jantunen ME, Siitonen A, Saxen H, Foxman B. Variations in 10 putative uropathogen virulence genes among urinary, faecal and peri-urethral Escherichia coli. J Med Microbiol. 2002;51:138–42.

    Article  CAS  Google Scholar 

  27. Hui CY, Guo Y, He QS, Peng L, Wu SC, Cao H, Huang SH. Escherichia coli outer membrane protease OmpT confers resistance to urinary cationic peptides. Microbiol Immunol. 2010;54:452–9.

    Article  CAS  Google Scholar 

  28. Sato M, Miyazaki K. Phylogenetic network analysis revealed the occurrence of horizontal gene transfer of 16S rRNA in the genus Enterobacter. Front Microbiol. 2017;8:2225.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by grants from Ningbo Health Branding Subject Fund (PPXK2018–04), Zhejiang Bureau of Traditional Chinese Medicine (2011ZB126), Ningbo Municipal Bureau of Science and Technology (2012A610186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-bei Weng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

We obtained the approval letter of Ningbo First Hospital Ethics Committee (Approval No. 2019-R043).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Dh., Lv, Df., Mi, Zh. et al. Investigation of antibiotic resistance determinants and virulence factors of uropathogenic Escherichia coli. J Antibiot 73, 314–319 (2020). https://doi.org/10.1038/s41429-020-0284-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0284-7

Search

Quick links