Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Isolation and structural elucidation of pelgipeptin E, a novel pore-forming pelgipeptin analog from Paenibacillus elgii with low hemolytic activity

Abstract

Pelgipeptins are cyclic lipopeptides composed of nine amino acids and a short fatty acid chain. In the present study, we report a novel pelgipeptin peptide that was isolated from Paenibacillus elgii BC34-6 and named pelgipeptin E (PGP-E). The molecular mass of PGP-E was 1072 Da as determined by liquid chromatography-mass spectrometry and the amino acid sequence was elucidated by tandem mass spectrometry. The complete molecular structure of PGP-E was characterized using 2D NMR spectroscopy. PGP-E consisted of a cyclic peptide backbone of Dab1-Val2-Dab3-Phe4-Leu5-Dab6-Val7-Leu8-Ser9 and a lipid chain (-CH2CH2CH3). PGP-E had broad antimicrobial activity against gram-negative and -positive bacteria, including methicillin-resistant Staphylococcus aureus strains. Furthermore, the mode of action of PGP-E was investigated using calcein dye leakage and membrane depolarization assays, which suggest that PGP-E acts via a membrane-active mechanism. The hemolytic activity of PGP-E was significantly lower than that of melittin, a well-known membrane-active peptide derived from bee venom. These results suggest that PGP-E is a potential candidate in the development of new peptide antibiotics.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10:369–78.

    Article  PubMed  Google Scholar 

  2. Ribeiro SM, et al. New frontiers for anti-biofilm drug development. Pharmacol Ther. 2016;160:133–44.

    CAS  Article  PubMed  Google Scholar 

  3. Mnif I, Ghribi D. Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers. 2015;104:129–47.

    CAS  Article  PubMed  Google Scholar 

  4. Muto CA, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol. 2003;24:362–86.

    Article  PubMed  Google Scholar 

  5. Schneider T, Muller A, Miess H, Gross H. Cyclic lipopeptides as antibacterial agents—potent antibiotic activity mediated by intriguing mode of actions. Int J Med Microbiol. 2014;304:37–43.

    CAS  Article  PubMed  Google Scholar 

  6. Mandal SM, Sharma S, Pinnaka AK, Kumari A, Korpole S. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol. 2013;13:152.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Ines M, Dhouha G. Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides. 2015;71:100–12.

    CAS  Article  PubMed  Google Scholar 

  8. Klevens RM, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298:1763–71.

    CAS  Article  PubMed  Google Scholar 

  9. Sharma D, Mandal SM, Manhas RK. Purification and characterization of a novel lipopeptide from Streptomyces amritsarensis sp. nov. active against methicillin-resistant Staphylococcus aureus. AMB Express. 2014;4:50.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev. 2016;36:4–31.

    CAS  Article  PubMed  Google Scholar 

  11. Ash C, Priest FG, Collins MD. 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus. Paenibacillus Antonie Van Leeuwenhoek. 1993;64:253–60. Molecular identification of rRNA group

    CAS  Article  PubMed  Google Scholar 

  12. Montes MJ, Mercade E, Bozal N, Guinea J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol. 2004;54(Pt 5):1521–6.

    CAS  Article  PubMed  Google Scholar 

  13. Saha P, Mondal AK, Mayilraj S, Krishnamurthi S, Bhattacharya A, Chakrabarti T. Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol. 2005;55(Pt 6):2577–81.

    CAS  Article  PubMed  Google Scholar 

  14. Sanchez MM, et al. Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol. 2005;55(Pt 2):935–9.

    CAS  Article  PubMed  Google Scholar 

  15. Yoon JH, Kang SJ, Yeo SH, Oh TK. Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol. 2005;55(Pt 6):2339–44.

    CAS  Article  PubMed  Google Scholar 

  16. Wu XC, Shen XB, Ding R, Qian CD, Fang HH, Li O. Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiol Lett. 2010;310:32–38.

    CAS  Article  PubMed  Google Scholar 

  17. Ding R, et al. Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol. 2011;49:942–9.

    CAS  Article  PubMed  Google Scholar 

  18. Mountford SJ, et al. The first total synthesis and solution structure of a polypeptin, PE2, a cyclic lipopeptide with broad spectrum antibiotic activity. Org Biomol Chem. 2017;15:7173–80.

    CAS  Article  PubMed  Google Scholar 

  19. Burkhart BM, Gassman RM, Langs DA, Pangborn WA, Duax WL. Heterodimer formation and crystal nucleation of gramicidin D. Biophys J. 1998;75:2135–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Manzini MC, et al. Peptide: lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Biochim Biophys Acta. 2014;1838:1985–99.

    CAS  Article  PubMed  Google Scholar 

  21. Emmert EA, Handelsman J. Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett. 1999;171:1–9.

    CAS  Article  PubMed  Google Scholar 

  22. Roongsawang N, Washio K, Morikawa M. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci. 2011;12:141–72.

    CAS  Article  Google Scholar 

  23. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16:115–25.

    CAS  Article  PubMed  Google Scholar 

  24. Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int. 2015;2015:473050.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heerklotz H, Seelig J. Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophys J. 2001;81:1547–54.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M. Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta. 2005;1726:87–95.

    CAS  Article  PubMed  Google Scholar 

  27. Kragh-Hansen U, le Maire M, Moller JV. The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J. 1998;75:2932–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Bio-industry Technology Development Program 2012, Ministry for Food, Agriculture, Forestry and Fisheries, (Grant No. 112003-3) and “Cooperative Research Program for Agricultural Science & Technology Development (Project No. PJ012467)”, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Won Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Il Kim, P., Bong, K.M. et al. Isolation and structural elucidation of pelgipeptin E, a novel pore-forming pelgipeptin analog from Paenibacillus elgii with low hemolytic activity. J Antibiot 71, 1008–1017 (2018). https://doi.org/10.1038/s41429-018-0095-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-018-0095-2

Further reading

Search

Quick links