Brief Communication | Published:

New phenolic bisabolane sesquiterpenoid derivatives with cytotoxicity from Aspergillus tennesseensis

The Journal of Antibioticsvolume 71pages538542 (2018) | Download Citation


Three new bisabolane sesquiterpenoid esters, aspertenols A–B (13), and six known compounds (49) were isolated from the fungus Aspergillus tennesseensis. The structures of new compounds were elucidated by extensive spectroscopic analysis. The cytotoxicities of 19 against A549, K562, and ASPC cell lines were tested by using the CCK8 method. Compounds 1, 3, 4, 6, 7, and 9 showed inhibition on K562 cell line with IC50 values in the range from 16.6 to 72.7 μM. Compounds 1, 4, and 9 showed moderate inhibitory activity against A549 with IC50 of 43.5, 70.2, and 61.1 μM, respectively.

  • Subscribe to The Journal of Antibiotics for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Wang Q, Chen TH, Bastow KF, Lee KH, Chen DF. Altaicalarins A-D, cytotoxic bisabolane sesquiterpenes from Ligularia altaica. J Nat Prod. 2010;73:139–42.

  2. 2.

    McEbroe FJ, Fenical W. Structures and synthesis of some new antibacterial sesquiterpenoids from the gorgonian coral Pseudopterogorgia rigida. Tetrahedron. 1978;34:1661–4.

  3. 3.

    Trisuwan K, et al. Sesquiterpene and xanthone derivatives from the sea fan-derived fungus Aspergillus sydowii PSU-F154. J Nat Prod. 2011;74:1663–7.

  4. 4.

    D’Armas HT, Mootoo BS, Reynolds WF. An unusual sesquiterpene derivative from the Caribbean gorgonian Pseudopterogorgia rigida. J Nat Prod. 2000;63:1593–5.

  5. 5.

    Cichewicz RS, et al. Stereochemical determination and bioactivity assessment of (S)-(+)-curcuphenol dimers isolated from the marine sponge Didiscus aceratus and synthesized through laccase biocatalysis. Bioorg Med Chem. 2005;13:5600–12.

  6. 6.

    Peng JN, Franzblau SG, Zhang FQ, Hamann MT. Novel sesquiterpenes and a lactone from the Jamaican sponge Myrmekioderma styx. Tetrahedron Lett. 2002;43:9699–702.

  7. 7.

    Almedia C, Elsaedi S, Kehraus S, Koenig GM. Novel bisabolane sesquiterpenes from the marine-derived fungus Verticillium tenerum. Nat Prod Commun. 2010;5:507–10.

  8. 8.

    Kudo S, Murakami Y, Miyanishi J, Tanaka K, Takada N, Hashimoto M. Isolation and absolute stereochemistry of optically active sydonic acid from Glonium sp. (Hysteriales, Ascomycota). Biosci Biotechnol Biochem. 2009;73:203–4.

  9. 9.

    Lu Z, et al. Cytotoxic polyphenols from the marine-derived fungus. Penicillium Expans J Nat Prod. 2010;73:911–4.

  10. 10.

    Li XD, Li XM, Xu GM, Zhang P, Wang BG. Antimicrobial phenolic bisabolanes and related derivatives from Penicillium aculeatum SD-321, a deep sea sediment-derived fungus. J Nat Prod. 2015;78:844–9.

  11. 11.

    Liu L, et al. Versicoamides F-H, prenylated indole alkaloids from Aspergillus tennesseensis. Org Lett. 2017;19:942–5.

  12. 12.

    Liu L, et al. Correction to versicoamides F-H, prenylated indole alkaloids from Aspergillus tennesseensis. Org Lett. 2017;19:1494–5.

  13. 13.

    Li, WT et al. Antibacterial constituents from Antarctic fungus, Aspergillus sydowii SP-1. Nat Prod Res. 2018;32:662–7.

  14. 14.

    Lee YM, Li H, Hong J, Cho HY, Bae KS. Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res. 2010;33:231–5.

  15. 15.

    Shao C, She Z, Guo Z, Peng H, Cai X. 1H and 13C NMR assignments for two anthraquinones and two xanthones from the mangrove fungus (ZSUH-36). Magn Reson Chem. 2007;45:434–8.

  16. 16.

    Gong DL, et al. Diphenyl etheric metabolites from Streptomyces sp. Neau 50. J Antibiot. 2011;64:465–7.

  17. 17.

    Gao HQ, et al. Diorcinols B-E, new prenylated diphenyl ethers from the marine-derived fungus Aspergillus versicolor ZLN-60. J Antibiot. 2013;66:539–42.

  18. 18.

    Mülhaupt T, Kaspar H, Otto S, Reichert M, Bringmann G, Lindel T. Isolation, structural elucidation, and synthesis of curcutetraol. Eur J Org Chem. 2005;2005:334–41.

Download references


This work was supported in part by the National Natural Science Foundation of China (81673334).

Author information

Author notes

  1. Li Liu and Ruixing Liu contributed equally to this work


  1. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, China

    • Li Liu
    • , Ruixing Liu
    • , Buddha Bahadur Basnet
    • , Li Bao
    • , Junjie Han
    • , Long Wang
    •  & Hongwei Liu
  2. Savaid Medicine School, University of Chinese Academy of Sciences, Beijing, 100049, China

    • Li Liu
    • , Ruixing Liu
    • , Li Bao
    • , Junjie Han
    •  & Hongwei Liu
  3. International College, University of Chinese Academy of Sciences, Beijing, 100049, China

    • Buddha Bahadur Basnet


  1. Search for Li Liu in:

  2. Search for Ruixing Liu in:

  3. Search for Buddha Bahadur Basnet in:

  4. Search for Li Bao in:

  5. Search for Junjie Han in:

  6. Search for Long Wang in:

  7. Search for Hongwei Liu in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Long Wang or Hongwei Liu.

Electronic supplementary material

About this article

Publication history






Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.