Antibiotic resistance mutations induced in growing cells of Bacillus-related thermophiles

Abstract

Stress-induced mutagenesis can assist pathogens in generating drug-resistant cells during antibiotic therapy; however, if and how antibiotics induce mutagenesis in microbes remains poorly understood. A non-pathogenic thermophile, Geobacillus kaustophilus HTA426, efficiently produces derivative cells resistant to rifampicin and streptomycin via rpoB and rpsL mutations, respectively. Here, we examined this phenomenon to suggest a novel mutagenic mode induced by antibiotics. Fluctuation analysis indicated that mutations occurred via spontaneous mutations during culture. However, mutations were much more frequent in growing cells than stationary cells, and mutation sites were varied through cell growth. These observations suggested that growing cells induced mutagenesis in response to antibiotics. An in-frame deletion of mfd, which governs transcription-coupled repair to correct DNA lesions on the transcribed strand, caused mutations that were comparable between growing and stationary cells; therefore, the mutagenic mechanism was attributable to DNA repair defects where growing cells depressed mfd function. Mutations occurred more frequently at optimal growth temperatures for G. kaustophilus than at a higher growth temperature, suggesting that the mutagenesis relies on active cellular activities rather than high temperature-associated DNA damage. In addition, the mutagenesis may involve a mutagenic factor targeting these sites, in addition to mfd depression, because rpoB and rpsL mutations were dominant at thymine and guanine sites on the transcribed strand. A similar mutagenic profile was observed for other Geobacillus and thermophilic Bacillus species. This suggests that Bacillus-related thermophiles commonly induce mutagenesis in response to rifampicin and streptomycin to produce resistant cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Smith KC. Spontaneous mutagenesis: experimental, genetic and other factors. Mutat Res. 1992;277:139–62.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Parry TE. On the mutagenic action of adenine. Leuk Res. 2007;31:1621–4.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Krokan HE, Drabløs F, Slupphaug G. Uracil in DNA—occurrence, consequences and repair. Oncogene. 2002;21:8935–48.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991;349:431–4.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Tajiri T, Maki H, Sekiguchi M. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. 1995;336:257–67.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74:681–710.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Simmons LA, Davies BW, Grossman AD, Walker GC. β clamp directs localization of mismatch repair in B acillus subtilis. Mol Cell. 2008;29:291–301.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Pillon MC, et al. Structure of the endonuclease domain of MutL: unlicensed to cut. Mol Cell. 2010;39:145–51.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Lindahl T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci USA. 1974;71:3649–53.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Michaels ML, Cruz C, Grollman AP, Miller JH. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci USA. 1992;89:7022–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Selby CP, Witkin EM, Sancar A. Escherichia coli mfd mutant deficient in “mutation frequency decline” lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc Natl Acad Sci USA. 1991;88:11574–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Park JS, Marr MT, Roberts JW. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell. 2002;109:757–67.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Karran P, Lindahl T. Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry. 1980;19:6005–11.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Lindahl T, Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974;13:3405–10.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Lindahl T, Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972;11:3610–8.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Jacobs KL, Grogan DW. Rates of spontaneous mutation in an archaeon from geothermal environments. J Bacteriol. 1997;179: 3298–303.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ram Y, Hadany L. Stress-induced mutagenesis and complex adaptation. Proc R Soc B. 2014;281:20141025.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kivisaar M. Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiol Lett. 2010;312:1–14.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Rosenberg SM, Shee C, Frisch RL, Hastings PJ. Stress-induced mutation via DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and medicine. Bioessays. 2012;34:885–92.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Nazina TN, et al. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol. 2001;51:433–46.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Takami H, Nishi S, Lu J, Shinamura S, Takaki Y. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles. 2004;8:351–6.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Zeigler DR. Bacillus genetic stock center catalog of strains. 7th ed. OH, USA: The Bacillus Genetic Stock Center; 2001. vol 3.

    Google Scholar 

  24. 24.

    Sharp RJ, Bown KJ, Atkinson A. Phenotypic and genotypic characterization of some thermophilic species of Bacillus. J Gen Microbiol. 1980;117:201–10.

    CAS  PubMed  Google Scholar 

  25. 25.

    Kobayashi J, Furukawa M, Ohshiro T, Suzuki H. Thermoadaptation-directed evolution of chloramphenicol acetyltransferase in an error-prone thermophile using improved procedures. Appl Microbiol Biotechnol. 2015;99:5563–72.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Kobayashi J, Tanabiki M, Doi S, Kondo A, Ohshiro T, Suzuki H. Unique plasmids generated via pUC replicon mutagenesis in an error-prone thermophile derived from Geobacillus kaustophilus HTA426. Appl Environ Microbiol. 2015;81:7625–32.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Suzuki H, Kobayashi J, Wada K, Furukawa M, Doi K. Thermoadaptation-directed enzyme evolution in an error-prone thermophile derived from Geobacillus kaustophilus HTA426. Appl Environ Microbiol. 2015;81:149–58.

    Article  PubMed  Google Scholar 

  28. 28.

    Wada K, Kobayashi J, Furukawa M, Doi K, Ohshiro T, Suzuki H. A thiostrepton resistance gene and its mutants serve as selectable markers in Geobacillus kaustophilus HTA426. Biosci Biotechnol Biochem. 2016;80:368–75.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Liao H, McKenzie T, Hageman R. Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci USA. 1986;83:576–80.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Carvajal–Rodríguez A. Teaching the fluctuation test in silico by using mutate. Biochem Mol Bio Educ. 2012;40:277–83.

    Article  Google Scholar 

  31. 31.

    Kendal WS, Frost P. Pitfalls and practice of Luria–Delbrück fluctuation analysis: a review. Cancer Res. 1988;48:1060–5.

    CAS  PubMed  Google Scholar 

  32. 32.

    Melancon P, Lemieux C, Brakier–Gingras L. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucl Acids Res. 1988;16:9631–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Nicholson WL, Maughan H. The spectrum of spontaneous rifampin resistance mutations in the rpoB gene of Bacillus subtilis 168 spores differs from that of vegetative cells and resembles that of Mycobacterium tuberculosis. J Bacteriol. 2002;184:4936–40.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Maughan H, Galeano B, Nicholson WL. Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. J Bacteriol. 2004;186:2481–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Nicholson WL, Park R. Anaerobic growth of Bacillus subtilis alters the spectrum of spontaneous mutations in the rpoB gene leading to rifampicin resistance. FEMS Microbiol Lett. 2015;362:fnv213.

    Article  PubMed  Google Scholar 

  36. 36.

    Hosoya Y, Okamoto S, Muramatsu H, Ochi K. Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother. 1998;42: 2041–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Morreall J, et al. Evidence for retromutagenesis as a mechanism for adaptive mutation in Escherichia coli. PLoS Genet. 2015;11:e1005477.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Doetsch PW. Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res. 2002;510:131–40.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Pybus C, et al. Transcription-associated mutation in Bacillus subtilis cells under stress. J Bacteriol. 2010;192:3321–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kasak L, Hõrak R, Kivisaar M. Promoter-creating mutations in Pseudomonas putida: a model system for the study of mutation in starving bacteria. Proc Natl Acad Sci USA. 1997;94:3134–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ, Rosenberg SM. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell. 2001;7:571–9.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    McKenzie GJ, Rosenberg SM. Adaptive mutations, mutator DNA polymerases and genetic change strategies of pathogens. Curr Opin Microbiol. 2001;4:586–94.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Sung HM, Yeamans G, Ross CA, Yasbin RE. Roles of YqjH and YqjW, homologs of the Escherichia coli UmuC/DinB or Y superfamily of DNA polymerases, in stationary-phase mutagenesis and UV-induced mutagenesis of Bacillus subtilis. J Bacteriol. 2003;185:2153–60.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Feng G, Tsui HT, Winkler ME. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol. 1996;178:2388–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ross C, et al. Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol. 2006;188:7512–20.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Gómez–Marroquín M, et al. Stationary-phase mutagenesis in stressed Bacillus subtilis cells operates by Mfd-dependent mutagenic pathways. Genes. 2016;7:33.

    Article  PubMed Central  Google Scholar 

  47. 47.

    Debora BN, et al. Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis. J Bacteriol. 2011;193:236–45.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Barajas–Ornelas RD, et al. Error-prone processing of apurinic/apyrimidinic (AP) sites by PolX underlies a novel mechanism that promotes adaptive mutagenesis in Bacillus subtilis. J Bacteriol. 2014;196:3012–22.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the following organizations: Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry, Bio-oriented Technology Research Advancement Institution, Japan; the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry, Japan; the Institute for Fermentation, Osaka, Japan; and JSPS KAKENHI (17K06925).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Suzuki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suzuki, H., Taketani, T., Kobayashi, J. et al. Antibiotic resistance mutations induced in growing cells of Bacillus-related thermophiles. J Antibiot 71, 382–389 (2018). https://doi.org/10.1038/s41429-017-0003-1

Download citation

Further reading

Search