Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Improving the electro-optical properties of cholesteric liquid crystal devices via cellulose nanoparticle dopants

Abstract

In the presence of a strong electric field, helices in a cholesteric liquid crystal (CLC) phase might be unwound, leaving liquid crystal (LC) molecules parallel to the electric field, thereby realizing transparency. Previously, we developed a novel particle-doped CLC cell without alignment layers that exhibited liquid crystal display (LCD) capabilities via electro-optical properties. This ability represents a novel advancement in LCD fabrication, resulting in enhanced electro-optical characteristics. To explore the impact of chirality on LCDs, we synthesized and radially constructed cellulose particles. These were then employed as chiral dopants in the production of LCD cells. The fabricated chiral nanoparticle (CNP)-doped PC05 CLC cell showed a high transparency of 97.4% and a fast response time of 7.6 ms. For the prepared radially constructed PDAT-doped PD2T PSCLC cell, a high transmittance of 93.6% and a fast response time of 13 ms were achieved. Fabrication of LCD cells without an alignment layer on substrates was achieved by indicate adding polymeric chiral nanoparticles into CLC mixtures. Adding 2 wt% chiral CNPs promoted the transmittance of the CLCs from 3.4 to 97%. This novel chiral dopant technique enables the use of a new easy method for the fabrication of LCDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang B, Wang G, Xia B, Zhong M, Fan P, Chen F, et al. Enzymatic synthesis of chiral polyamide via condensation of natural source amino acid diesters and diamine. Macromol Chem Phys. 2021;222:2100162.

    Article  CAS  Google Scholar 

  2. Zhang Y, Xia B, Li Y, Lin X, Wu Q. Substrate engineering in lipase-catalyzed selective polymerization of d-/l-aspartates and diols to prepare helical chiral polyester. Biomacromolecules. 2021;22:918–26.

    Article  CAS  PubMed  Google Scholar 

  3. Pschyklenk L, Wagner T, Lorenz A, Kaul P. Optical gas sensing with encapsulated chiral-nematic liquid crystals. ACS Appl Polym Mater. 2020;2:1925–32.

    Article  CAS  Google Scholar 

  4. Yan J, Ota F, San Jose BA, Akagi K. Chiroptical resolution and thermal switching of chirality in conjugated polymer luminescence via selective reflection using a double-layered cell of chiral nematic liquid crystal. Adv Funct Mater. 2017;27:1604529.

    Article  Google Scholar 

  5. Lu X, Zhou Z, Ni B, Li H, Li Y, Li B, et al. Tuning the circularly polarized luminescence of polymer-stabilized cholesteric liquid crystal films using chiral dopants. J Mater Chem C. 2022;10:8246–53.

    Article  CAS  Google Scholar 

  6. Froyen AAF, Wübbenhorst M, Liu D, Schenning APHJ. Electrothermal color tuning of cholesteric liquid crystals using interdigitated electrode patterns. Adv Electron Mater. 2021;7:2000958.

    Article  CAS  Google Scholar 

  7. Lu H, Hu J, Chu Y, Xu W, Qiu L, Wang X, et al. Cholesteric liquid crystals with an electrically controllable reflection bandwidth based on ionic polymer networks and chiral ions. J Mater Chem C. 2015;3:5406–11.

    Article  CAS  Google Scholar 

  8. Lu H, Wang Q, Zhu M, Huang P, Xu M, Qiu L, et al. Electrically controllable reflection bandwidth polymer-stabilized cholesteric liquid crystals with low operating voltage. Liq Cryst. 2022;49:1314–21.

    Article  CAS  Google Scholar 

  9. Inoue Y, Yoshida H, Inoue K, Shiozaki Y, Kubo H, Fujii A, et al. Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network. Adv Mater. 2011;23:5498–501.

    Article  CAS  PubMed  Google Scholar 

  10. White TJ, McConney ME, Bunning TJ. Dynamic color in stimuli-responsive cholesteric liquid crystals. J Mater Chem. 2010;20:9832–47.

    Article  CAS  Google Scholar 

  11. Lu P, Chen Y, Chen Z, Yuan Y, Zhang H. Electric field, temperature and light-triggered triple dynamic circularly polarized luminescence switching in fluorescent cholesteric liquid crystals with a large dissymmetry factor. J Mater Chem C. 2021;9:6589–96.

    Article  CAS  Google Scholar 

  12. Rouhbakhsh Z, Verdian A, Rajabzadeh G. Design of a liquid crystal-based aptasensing platform for ultrasensitive detection of tetracycline. Talanta. 2020;206:120246.

    Article  CAS  PubMed  Google Scholar 

  13. Tan H, Yang S, Shen G, Yu R, Wu Z. Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition. Angew Chem Int Ed. 2010;49:8608–11.

    Article  CAS  Google Scholar 

  14. Škarabot M, Osmanagič E, Muševič I. Surface anchoring of nematic liquid crystal 8OCB on a DMOAP‐silanated glass surface. Liq Cryst. 2006;33:581–5.

    Article  Google Scholar 

  15. Zhang Y, Yang W, Gu M, Wei Q, Lv P, Li M, et al. Versatile homeotropic liquid crystal alignment with tunable functionality prepared by one-step method. J Colloid Interface Sci. 2022;608:2290–7.

    Article  CAS  PubMed  Google Scholar 

  16. Lee CS, Kumar TA, Kim JH, Lee JH, Gwag JS, Lee G-D, et al. An electrically switchable visible to infra-red dual frequency cholesteric liquid crystal light shutter. J Mater Chem C. 2018;6:4243–9.

    Article  CAS  Google Scholar 

  17. Kumar P, Kang S-W, Lee SH. Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal. Opt Mater Express. 2012;2:1121–34.

    Article  CAS  Google Scholar 

  18. Oh S-W, Baek J-M, Heo J, Yoon T-H. Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film. Dyes Pigments. 2016;134:36–40.

    Article  CAS  Google Scholar 

  19. Oh S-W, Kim S-H, Yoon T-H. Thermal control of transmission property by phase transition in cholesteric liquid crystals. J Mater Chem C. 2018;6:6520–5.

    Article  CAS  Google Scholar 

  20. Liang X, Chen M, Wang Q, Guo S, Zhang L, Yang H. Active and passive modulation of solar light transmittance in a hybrid thermochromic soft-matter system for energy-saving smart window applications. J Mater Chem C. 2018;6:7054–62.

    Article  CAS  Google Scholar 

  21. Liu C-Y, Yen C-F, Hung Y-H, Tu C-M, Wu G-Y, Chen H-Y. Polymer-stabilized bistable dual-frequency cholesteric liquid crystal devices assisted by a predesigned chiral dopant. J Mater Chem C. 2021;9:16672–81.

    Article  CAS  Google Scholar 

  22. Maiti UN, Lee WJ, Lee JM, Oh Y, Kim JY, Kim JE, et al. 25th Anniversary Article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv Mater. 2014;26:40–67.

    Article  CAS  PubMed  Google Scholar 

  23. Jian B-R, Tang C-Y, Lee W. Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals. Carbon. 2011;49:910–4.

    Article  CAS  Google Scholar 

  24. Ma Z, Han Y, Li Z, Zhang Y, Zhang H, Zheng G, et al. Effects of nematic liquid crystal doped with multi-walled carbon nanotube on electro-optic properties and electrostatic discharge immunity of liquid crystal display device. Liq Cryst. 2023;50:505–18.

  25. Cook G, Reshetnyak VY, Ziolo RF, Basun SA, Banerjee PP, Evans DR. Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles. Opt Express. 2010;18:17339–45.

    Article  CAS  PubMed  Google Scholar 

  26. Gdovinová V, Tomašovičová N, Jeng S-C, Zakutanská K, Kula P, Kopčanský P. Memory effect in nematic phase of liquid crystal doped with magnetic and non-magnetic nanoparticles. J Mol Liq. 2019;282:286–91.

    Article  Google Scholar 

  27. Gorkunov MV, Osipov MA. Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter. 2011;7:4348–56.

    Article  CAS  Google Scholar 

  28. Haraguchi F, Inoue K-I, Toshima N, Kobayashi S, Takatoh K. Reduction of the threshold voltages of nematic liquid crystal electrooptical devices by doping inorganic nanoparticles. Jpn J Appl Phys. 2007;46:L796.

    Article  CAS  Google Scholar 

  29. Kumar A, Prakash J, Khan MT, Dhawan SK, Biradar AM. Memory effect in cadmium telluride quantum dots doped ferroelectric liquid crystals. Appl Phys Lett. 2010;97:163113.

    Article  Google Scholar 

  30. Kinkead B, Hegmann T. Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J Mater Chem. 2010;20:448–58.

    Article  CAS  Google Scholar 

  31. Lapanik V, Timofeev S, Haase W. Electro-optic properties of nematic and ferroelectric liquid crystalline nanocolloids doped with partially reduced graphene oxide. Phase Transit. 2016;89:133–43.

    Article  CAS  Google Scholar 

  32. Zhang W, Wang X, Wang D, Yang Z, Gao H, Xing Y, et al. Blue phase liquid crystals affected by graphene oxide modified with aminoazobenzol group. Liq Cryst. 2016;43:573–80.

    Article  CAS  Google Scholar 

  33. Ni S, Li H, Li S, Zhu J, Tan J, Sun X, et al. Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets. J Mater Chem C. 2014;2:1730–5.

    Article  CAS  Google Scholar 

  34. Kocakülah G, Algül G, Köysal O. Effect of CdSeS/ZnS quantum dot concentration on the electro-optical and dielectric properties of polymer stabilized liquid crystal. J Mol Liq. 2020;299:112182.

    Article  Google Scholar 

  35. Kocakülah G, Balci S, Köysal O. Determination of phase transition and electro-optical behaviors of quantum dot doped polymer dispersed liquid crystal. J Electron Mater. 2020;49:3427–34.

    Article  Google Scholar 

  36. Liu X, Wei R, Hoang PT, Wang X, Liu T, Keller P. Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles. Adv Funct Mater. 2015;25:3022–32.

    Article  CAS  Google Scholar 

  37. Draper M, Saez IM, Cowling SJ, Gai P, Heinrich B, Donnio B, et al. Self-assembly and shape morphology of liquid crystalline gold metamaterials. Adv Funct Mater. 2011;21:1260–78.

    Article  CAS  Google Scholar 

  38. Middha M, Kumar R, Raina KK. Effects of chirality on optical and electro-optic behavior of nematic liquid crystals doped with functionalized silver nanoparticles. J Mol Liq. 2016;219:631–6.

    Article  CAS  Google Scholar 

  39. Singh UB, Dhar R, Dabrowski R, Pandey MB. Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals. Liq Cryst. 2013;40:774–82.

    Article  CAS  Google Scholar 

  40. Mishra M, Dabrowski RS, Vij JK, Mishra A, Dhar R. Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles. Liq Cryst. 2015;42:1580–90.

    CAS  Google Scholar 

  41. Bednarska K, Oszwa P, Bartosewicz B, Jankiewicz B, Lesiak P, Ertman S, et al. Enhancement of thermal and electro-optical properties of photonic crystal fibers infiltrated with a modified 6CHBT nematic liquid crystal doped with gold nanoparticles. Opt Mater. 2019;98:109419.

    Article  CAS  Google Scholar 

  42. Wojcik M, Lewandowski W, Matraszek J, Mieczkowski J, Borysiuk J, Pociecha D, et al. Liquid-crystalline phases made of gold nanoparticles. Angew Chem Int Ed. 2009;48:5167–9.

    Article  CAS  Google Scholar 

  43. Nishida N, Shiraishi Y, Kobayashi S, Toshima N. Fabrication of liquid crystal sol containing capped Ag−Pd bimetallic nanoparticles and their electro-optic properties. J Phys Chem C. 2008;112:20284–90.

    Article  CAS  Google Scholar 

  44. Kobayashi S, Miyama T, Nishida N, Sakai Y, Shiraki H, Shiraishi Y, et al. Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response. J Disp Technol. 2006;2:121–9.

    Article  CAS  Google Scholar 

  45. Wu G-Y, Chang K-T, Ou S-Y, Zhuang C-H, Liu C-Y. Polymer beads dispersed liquid crystal devices (PBLCD) achieved by predesigned radially constructed polymeric particles. J Appl Polym Sci. 2022;139:e53037.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science and Technology Council (NSTC) of the Republic of China (Taiwan) for financially supporting this research under Contract MOST 111-2221-E-006-156. This research was also supported in part by the Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University (NCKU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yen Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CY., Emelyanenko, A.V., Hung, SC. et al. Improving the electro-optical properties of cholesteric liquid crystal devices via cellulose nanoparticle dopants. Polym J 56, 541–551 (2024). https://doi.org/10.1038/s41428-023-00879-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00879-1

Search

Quick links