Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

β-1,3-d-glucan lentinan/Poly-dA40 triple-helical complex in dilute solutions

Abstract

Lentinan (Len) is a linear (1,3)-β-d-glucan with two of its five main-chain glucose-bearing (1,6)-β-d-glucan side chains. Like other β-d-glucans, Len is expected to form stoichiometric complexes with single-stranded homo-DNAs such as poly(dA). The poor water solubility of Len impeded accurate characterization of Len in solution and determination of its molecular weight. We found that Len was readily characterized in DMSO by using a DMSO/LiCl mobile phase in chromatography to give reasonable recovery and an accurate molecular weight. Conformational analysis in DMSO showed that Len adopted a swollen random coil structure, and the triple helix was dissociated. A series of Len-dA40 complexes were prepared with different mixing ratios, and there was almost no residual Len and dA40 when the molar ratio of the main chain glucose to the base was 2. This stoichiometric ratio was the same as those for other β-d-glucan/DNA complexes. A conformational analysis using light scattering and small-angle X-ray scattering showed that the complex took a semiflexible path without branching. One complex contained 4-20 DNA molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature. 1969;222:687–8.

    Article  CAS  PubMed  Google Scholar 

  2. Chemistry, biochemistry, and biology of 1-3 beta glucans and related polysaccharides. Academic Press: 2009.

  3. Ina K, Kataoka T, Ando T. The use of lentinan for treating gastric cancer. Anti-cancer agents Med Chem. 2013;13:681–8.

    Article  CAS  Google Scholar 

  4. Oba K, Kobayashi M, Matsui T, Kodera Y, Sakamoto J. Individual patient based meta-analysis of lentinan for unresectable/recurrent gastric cancer. Anticancer Res. 2009;29:2739–45.

    PubMed  Google Scholar 

  5. Norisuye T, Yanaki T, Fujita H. Triple helix of a schizophyllum commune polysaccharide in aqueous solution. J Polym Sci Polym Phys Ed 1980;18:547–58.

    Article  CAS  Google Scholar 

  6. Yanaki T, Norisuye T, Fujita H. Triple helix of schizophyllum commune polysaccharide in dilute solution. 3. Hydrodynamic properties in water. Macromolecules. 1980;13:1462–6.

    Article  CAS  Google Scholar 

  7. Kashiwagi Y, Norisuye T, Fujita H. Triple helix of Schizophyllum commune polysaccharide in dilute solution. 4. Light scattering and viscosity in dilute aqueous sodium hydroxide. Macromolecules. 1981;14:1220–5.

    Article  CAS  Google Scholar 

  8. Sato T, Norisuye T, Fujita H. Melting behavior of Schizophyllum commune polysaccharides in mixtures of water and dimethyl sulfoxide. Carbohydr Res. 1981;95:195–203.

    Article  CAS  Google Scholar 

  9. Sato T, Norisuye T, Fujita H. Triple helix of Schizophyllum commune polysaccharide in dilute solution. 5. Light scattering and refractometry in mixtures of water and dimethyl sulfoxide. Macromolecules. 1983;16:185–9.

    Article  CAS  Google Scholar 

  10. Yanaki T, Ito W, Tabata K, Kojima T, Norisuye T, Takano N, et al. Correlation between the antitumor activity of a polysaccharide schizophyllan and its triple-helical conformation in dilute aqueous solution. Biophys Chem. 1983;17:337–42.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Li X, Zhou Q, Zhang X, Chen R. Transition from triple helix to coil of lentinan in solution measured by SEC, Viscometry, and 13C NMR. Polym J. 2002;34:443–9.

    Article  CAS  Google Scholar 

  12. Yoshiba K, Teramoto A, Nakamura N, Shikata T, Miyazaki Y, Sorai M, et al. Water structures of differing order and mobility in aqueous solutions of schizophyllan, a triple-helical polysaccharide as revealed by dielectric dispersion measurements. Biomacromolecules. 2004;5:2137–46.

    Article  CAS  PubMed  Google Scholar 

  13. Okobira T, Miyoshi K, Uezu K, Sakurai K, Shinkai S. Molecular dynamics studies of side chain effect on the beta-1,3-D-glucan triple helix in aqueous solution. Biomacromolecules. 2008;9:783–8.

    Article  CAS  PubMed  Google Scholar 

  14. Sumiya K, Matsunaga T, Tanaka M, Mochizuki S, Sakurai K. Oligo-DNA stoichiometrically binds β-1,3-glucan with the best fit length. Biomacromolecules. 2020;21:4823–34.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Zhang X, Zhou Q, Zhang P, Zhang M, Li X. Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl aqueous solution characterized by light scattering. Polym J. 2001;33:317–21.

    Article  CAS  Google Scholar 

  16. Wang X, Xu X, Zhang L. Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution. J Phys Chem B. 2008;112:10343–51.

    Article  CAS  PubMed  Google Scholar 

  17. Sato T, Sakurai K, Norisuye T, Fujita H. Collapse of randomly coiled Schizophyllan in mixtures of water and dimethylsulfoxide. Polym J. 1983;15:87–96.

    Article  CAS  Google Scholar 

  18. McIntire TM, Brant DA. Observations of the (1→3)-β-d-Glucan Linear Triple Helix to Macrocycle Interconversion Using Noncontact Atomic Force Microscopy. J Am Chem Soc. 1998;120:6909–19.

    Article  CAS  Google Scholar 

  19. Sakurai K, Shinkai S. Molecular recognition of adenine, cytosine, and uracil in a single- stranded RNA by a natural polysaccharide: Schizophyllan. J Am Chem Soc. 2000;122:4520–1.

    Article  CAS  Google Scholar 

  20. Sakurai K, Mizu M, Shinkai S. Polysaccharide-polynucleotide complexes. 2. Complementary polynucleotide mimic behavior of the natural polysaccharide schizophyllan in the macromolecular complex with single-stranded RNA and DNA. Biomacromolecules. 2001;2:641–50.

    Article  CAS  PubMed  Google Scholar 

  21. Mochizuki S, Sakaurai K. β-1,3-Glucan/antisense oligonucleotide complex stabilized with phosphorothioation and its gene suppression. Bioorg Chem. 2010;38:260–4.

    Article  CAS  PubMed  Google Scholar 

  22. Kimura T, Koumoto K, Sakurai K, Shinkai S. Polysaccharide-polynucleotide complexes (III): A novel interaction between the β-1,3-glucan family and the single-stranded RNA poly(C). Chem Lett. 2000;11:1242–3.

    Article  Google Scholar 

  23. Anada T, Okada N, Minari J, Karinaga R, Mizu M, Koumoto K, et al. CpG DNA/zymosan complex to enhance cytokine secretion owing to the cocktail effect. Bioorg Med Chem Lett 2006;16:1301–4.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Q, Xu X, Zhang L, Yu J. Interaction between polydeoxyadenylic acid and β-glucan from Lentinus edodes. Eur Polym J. 2012;48:1329–38.

    Article  CAS  Google Scholar 

  25. Mizu M, Koumoto K, Anada T, Matsumoto T, Numata M, Shinkai S, et al. A polysaccharide carrier for immunostimulatory CpG DNAs to enhance cytokine secretion. J Am Chem Soc. 2004;126:8372–3.

    Article  CAS  PubMed  Google Scholar 

  26. Shimada N, Ishii KJ, Takeda Y, Coban C, Torii Y, Shinkai S, et al. Carrier to effectively deliver native phosphodiester CpG DNA to APCs. Bioconjug Chem. 2007;18:1280–6.

    Article  CAS  PubMed  Google Scholar 

  27. Minari J, Shimada N, Sakurai K. Clustered CpG sequences to enhance cytokine secretion from macrophages. Chem Lett. 2008;37:92–93.

    Article  CAS  Google Scholar 

  28. Minari J, Mochizuki S, Sakurai K. Enhanced cytokine secretion owing to multiple CpG side chains of DNA duplex. Oligonucleotides. 2008;18:337–44.

    Article  CAS  PubMed  Google Scholar 

  29. Mizu M, Shinkai S, Sakurai K, Koumoto K, Numata M, Matsumoto T. Immunostimulating agents. 2010. US/2008/0262210 A1

  30. Kobiyama K, Aoshi T, Narita H, Kuroda E, Hayashi M, Tetsutani K, et al. Nonagonistic Dectin-1 ligand transforms CpG into a multitask nanoparticulate TLR9 agonist. Proc Natl Acad Sci. 2014;111:3086–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koizumi M, Niwa T, Jonai N, Ishii K, Kobiyama K. CpG Spacer-oligonucleotide-containing complex having immunopotentiating activity, and use of same. 2016. WO/2016/152767 A1

  32. Ishii K, Aoshi T, Kobiyama K. Use of nucleic acid-polysaccharide complexes having immunopotentiating activity as anti-tumor drug. 2014. WO/2016/103531 A1

  33. JST NexTEP project: https://www.jst.go.jp/jitsuyoka/topics/saitaku_20140611.html 2014.

  34. Caputo F, Clogston J, Calzolai L, Roesslein M, Prina-Mello A, Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. 2019; Vol. 299.

  35. D’Mello SR, Cruz CN, Chen M-L, Kapoor M, Lee SL, Tyner KM. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 2017;12:523.

    Article  PubMed  Google Scholar 

  36. Yamakawa H, Yoshizaki T, Helical wormlike Chains in polymer solutions. New York: Springer-Verlag Berlin Heidelberg; 2016 p 1-511.

  37. Akiba I, Sakurai K. Characterizing block-copolymer micelles used in nanomedicines via solution static scattering techniques. Polym J. 2021;53:951–73.

    Article  CAS  Google Scholar 

  38. Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res. 1970;30:2776–81.

    CAS  PubMed  Google Scholar 

  39. Rao Z, Dong Y, Zheng X, Tang K, Liu J. Extraction, purification, bioactivities and prospect of lentinan: A review. Biocatal Agric Biotechnol. 2021;37:102163.

    Article  CAS  Google Scholar 

  40. Kono H, Kondo N, Hirabayashi K, Ogata M, Totani K, Ikematsu S, et al. NMR spectroscopic structural characterization of a water-soluble β-(1 → 3, 1 → 6)-glucan from Aureobasidium pullulans. Carbohydr Polym. 2017;174:876–86.

    Article  CAS  PubMed  Google Scholar 

  41. Sanada Y, Matsuzaki T, Mochizuki S, Okobira T, Uezu K, Sakurai K. β-1,3-d-Glucan Schizophyllan/Poly(dA) Triple-Helical Complex in Dilute Solution. J Phys Chem B. 2012;116:87–94.

    Article  CAS  PubMed  Google Scholar 

  42. Benoit H, Doty P. Light scattering from non-Gaussian chains. J Phys Chem. 1953;57:958–63.

    Article  CAS  Google Scholar 

  43. Fujita H, Polymer Slutions. Elsevier: Amsterdam, 1990; Vol. 9.

  44. Ghareeb HO, Malz F, Kilz P, Radke W. Molar mass characterization of cellulose acetates over a wide range of high DS by size exclusion chromatography with multi-angle laser light scattering detection. Carbohydr Polym. 2012;88:96–102.

    Article  CAS  Google Scholar 

  45. Burchard W, Kajiwara K, Whiffen DH. The statistics of stiff chain molecules I. The particle scattering factor. Proc R Soc Lond A Math Phys Sci. 1970;316:185–99.

    Article  CAS  Google Scholar 

  46. Sakurai K, Shinkai S, Kimura T, Tabata K, Koumoto K, Gronwald O, Gene carrier. US Patent 20,110,301,230: 2011.

Download references

Acknowledgements

This work is financially supported by the JST NexTEP program (2014), and all SAXS measurements were carried out at SPring-8 BL-40B2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Sakurai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsunaga, T., Sumiya, K., Tanaka, M. et al. β-1,3-d-glucan lentinan/Poly-dA40 triple-helical complex in dilute solutions. Polym J 56, 43–54 (2024). https://doi.org/10.1038/s41428-023-00839-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00839-9

Search

Quick links