Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Construction of functional microtubules and artificial motile systems based on peptide design

Abstract

Peptides are versatile molecular tools that can self-assemble and participate in molecular recognition processes. Our group has developed rationally designed peptides that (1) bind to the inside of microtubules and (2) cause light-induced peptide nanofiber growth. This focus review describes the construction of new bio-nanoarchitectures using these peptide-based technologies. A newly developed Tau-derived peptide was used to encapsulate various nanomaterials inside microtubules, thereby modulating the structure and function of the microtubules. Moreover, the propulsion of micrometer-sized spheres driven by light-induced peptide nanofiber growth was accomplished. These methods represent new concepts for bio-nanomaterials that mimic, control and surpass natural systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davis JT. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed. 2004;43:668–98.

    CAS  Google Scholar 

  2. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pieters BJGE, van Eldijk MB, Nolte RJM, Mecinović J. Natural supramolecular protein assemblies. Chem Soc Rev. 2015;45:24–39.

    Google Scholar 

  4. Chen H, Liu N, He F, Liu Q, Xu X. Specific β-glucans in chain conformations and their biological functions. Polym J. 2022;54:427–53.

    CAS  Google Scholar 

  5. Shibata A, Higashi SL, Ikeda M. Nucleic acid-based fluorescent sensor systems: a review. Polym J. 2022;54:751–66.

    CAS  Google Scholar 

  6. Sawada T, Mihara H, Serizawa T. Peptides as new smart bionanomaterials: molecular-recognition and self-assembly capabilities. Chem Rec. 2013;13:172–86.

    CAS  PubMed  Google Scholar 

  7. Pelay‐Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed. 2015;54:8896–927.

    Google Scholar 

  8. Groß A, Hashimoto C, Sticht H, Eichler J. Synthetic peptides as protein mimics. Front Bioeng Biotechnol. 2016;3:211.

    PubMed  PubMed Central  Google Scholar 

  9. Hamley IW. Small bioactive peptides for biomaterials design and therapeutics. Chem Rev. 2017;117:14015–41.

    CAS  PubMed  Google Scholar 

  10. Inaba H, Matsuura K. Peptide nanomaterials designed from natural supramolecular systems. Chem Rec. 2019;19:843–58.

    CAS  PubMed  Google Scholar 

  11. Ariga K, Minami K, Ebara M, Nakanishi J. What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym J. 2016;48:371–89.

    CAS  Google Scholar 

  12. Ariga K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. Nanoscale. 2022;14:10610–29.

    CAS  Google Scholar 

  13. Ariga K, Fakhrullin R. Materials nanoarchitectonics from atom to living cell: a method for everything. Bull Chem Soc Jpn. 2022;95:774–95.

    CAS  Google Scholar 

  14. Huang Y, Wiedmann MM, Suga H. RNA display methods for the discovery of bioactive macrocycles. Chem Rev. 2019;119:10360–91.

    CAS  Google Scholar 

  15. Kondo T, Iwatani Y, Matsuoka K, Fujino T, Umemoto S, Yokomaku Y, et al. Antibody-like proteins that capture and neutralize SARS-CoV-2. Sci Adv. 2020;6:eabd3916.

    CAS  PubMed Central  Google Scholar 

  16. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    CAS  PubMed Central  Google Scholar 

  17. Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, et al. Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative models. bioRxiv. 2022. https://doi.org/10.1101/2022.12.09.519842.

  18. Fojo T, editor. The role of microtubules in cell biology, neurobiology, and oncology. Totowa, NJ: Humana Press; 2008.

  19. Pampaloni F, Florin E-L. Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. Trends Biotechnol. 2008;26:302–10.

    CAS  Google Scholar 

  20. Conde C, Cáceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. 2009;10:319–32.

    CAS  Google Scholar 

  21. Chaaban S, Brouhard GJ. A microtubule bestiary: structural diversity in tubulin polymers. Mol Biol Cell. 2017;28:2924–31.

    CAS  PubMed Central  Google Scholar 

  22. Brouhard GJ, Rice LM. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol. 2018;19:451–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol. 2020;21:307–26.

    CAS  Google Scholar 

  24. Inaba H, Matsuura K. Modulation of microtubule properties and functions by encapsulation of nanomaterials using a Tau-derived peptide. Bull Chem Soc Jpn. 2021;94:2100–12.

    CAS  Google Scholar 

  25. Hess H, Vogel V. Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev Mol Biotechnol. 2001;82:67–85.

    CAS  Google Scholar 

  26. Goel A, Vogel V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat Nanotechnol. 2008;3:465–75.

    CAS  Google Scholar 

  27. Hawkins T, Mirigian M, Selcuk Yasar M, Ross JL. Mechanics of microtubules. J Biomech. 2010;43:23–30.

    PubMed  Google Scholar 

  28. Agarwal A, Hess H. Biomolecular motors at the intersection of nanotechnology and polymer science. Prog Polym Sci. 2010;35:252–77.

    CAS  Google Scholar 

  29. Malcos JL, Hancock WO. Engineering tubulin: microtubule functionalization approaches for nanoscale device applications. Appl Microbiol Biotechnol. 2011;90:1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bachand GD, Spoerke ED, Stevens MJ. Microtubule-based nanomaterials: exploiting nature’s dynamic biopolymers. Biotechnol Bioeng. 2015;112:1065–73.

    CAS  PubMed  Google Scholar 

  31. Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev. 2017;46:5570–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. LeGuennec M, Klena N, Aeschlimann G, Hamel V, Guichard P. Overview of the centriole architecture. Curr Opin Struct Biol. 2021;66:58–65.

    CAS  PubMed  Google Scholar 

  33. Lüders J, Stearns T. Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol. 2007;8:161–7.

    PubMed  Google Scholar 

  34. Ichikawa M, Bui KH. Microtubule inner proteins: a meshwork of luminal proteins stabilizing the doublet microtubule. BioEssays. 2018;40:1700209.

    Google Scholar 

  35. Stepanek L, Pigino G. Microtubule doublets are double-track railways for intraflagellar transport trains. Science. 2016;352:721–4.

    CAS  PubMed  Google Scholar 

  36. Roll-Mecak A. The tubulin code in microtubule dynamics and information encoding. Dev Cell. 2020;54:7–20.

    CAS  PubMed  Google Scholar 

  37. Uchida N, Kohata A, Okuro K, Cardellini A, Lionello C, Zizzi EA, et al. Reconstitution of microtubule into GTP-responsive nanocapsules. Nat Commun. 2022;13:5424.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mandelkow E, Mandelkow E-M. Microtubules and microtubule-associated proteins. Curr Opin Cell Biol. 1995;7:72–81.

    CAS  Google Scholar 

  39. Goodson HV, Jonasson EM. Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol. 2018;10:a022608.

    PubMed  PubMed Central  Google Scholar 

  40. Bodakuntla S, Jijumon AS, Villablanca C, Gonzalez-Billault C, Janke C. Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol. 2019;29:804–19.

    CAS  Google Scholar 

  41. Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme J-C, Gory-Fauré S, et al. Beyond neuronal microtubule stabilization: MAP6 and CRMPS, two converging stories. Front Mol Neurosci. 2021;14:665693.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsuji C, Dodding MP. Lumenal components of cytoplasmic microtubules. Biochem Soc Trans. 2022;50:1953–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Inaba H, Yamamoto T, Kabir AMR, Kakugo A, Sada K, Matsuura K. Molecular encapsulation inside microtubules based on Tau-derived peptides. Chem Eur J. 2018;24:14958–67.

    CAS  PubMed  Google Scholar 

  44. Inaba H, Matsuura K. Encapsulation of nanomaterials inside microtubules by using a Tau-derived peptide. In: Inaba H, editor. Microtubules: methods and protocols. New York, NY: Springer; 2022. p. 243–60.

  45. Inaba H. Development of dynamic bionanostructures based on peptides: molecular encapsulation inside microtubules and light-induced propulsion of microspheres. Chem Lett. 2023;52:459–68.

    CAS  Google Scholar 

  46. Inaba H, Kabir AMR, Kakugo A, Sada K, Matsuura K. Structural changes of microtubules by encapsulation of gold nanoparticles using a Tau-derived peptide. Chem Lett. 2022;51:348–51.

    CAS  Google Scholar 

  47. Inaba H, Yamamoto T, Iwasaki T, Kabir AMR, Kakugo A, Sada K, et al. Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chem Commun. 2019;55:9072–5.

    CAS  Google Scholar 

  48. Inaba H, Sueki Y, Ichikawa M, Kabir AMR, Iwasaki T, Shigematsu H, et al. Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside. Sci Adv. 2022;8:eabq3817.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Inaba H, Yamada M, Rashid MR, Kabir AMR, Kakugo A, Sada K, et al. Magnetic force-induced alignment of microtubules by encapsulation of CoPt nanoparticles using a Tau-derived peptide. Nano Lett. 2020;20:5251–8.

    CAS  PubMed  Google Scholar 

  50. Inaba H, Nagata M, Miyake KJ, Kabir AMR, Kakugo A, Sada K, et al. Cyclic Tau-derived peptides for stabilization of microtubules. Polym J. 2020;52:1143–51.

    CAS  Google Scholar 

  51. Watari S, Inaba H, Tamura T, Kabir AMR, Kakugo A, Sada K, et al. Light-induced stabilization of microtubules by photo-crosslinking of a Tau-derived peptide. Chem Commun. 2022;58:9190–3.

    CAS  Google Scholar 

  52. Inaba H, Sakaguchi M, Watari S, Ogawa S, Kabir AMR, Kakugo A, et al. Reversible photocontrol of microtubule stability by spiropyran-conjugated Tau-derived peptides. ChemBioChem. 2023;24:e202200782.

    CAS  Google Scholar 

  53. Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S. Molecular robots with sensors and intelligence. Acc Chem Res. 2014;47:1681–90.

    CAS  PubMed  Google Scholar 

  54. Murata S, Toyota T, Nomura SM, Nakakuki T, Kuzuya A. Molecular cybernetics: challenges toward cellular chemical artificial intelligence. Adv Funct Mater. 2022;32:2201866.

    CAS  Google Scholar 

  55. Sánchez S, Soler L, Katuri J. Chemically powered micro- and nanomotors. Angew Chem Int Ed. 2015;54:1414–44.

    Google Scholar 

  56. Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev. 2015;115:8704–35.

    CAS  PubMed  Google Scholar 

  57. Xu L, Mou F, Gong H, Luo M, Guan J. Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev. 2017;46:6905–26.

    CAS  PubMed  Google Scholar 

  58. Villa K, Pumera M. Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chem Soc Rev. 2019;48:4966–78.

    CAS  Google Scholar 

  59. Baroncini M, Silvi S, Credi A. Photo- and redox-driven artificial molecular motors. Chem Rev. 2020;120:200–68.

    CAS  PubMed  Google Scholar 

  60. Soto F, Karshalev E, Zhang F, Esteban Fernandez de Avila B, Nourhani A, Wang J. Smart materials for microrobots. Chem Rev. 2022;122:5365–403.

    CAS  Google Scholar 

  61. Upadhyaya A, van Oudenaarden A. Biomimetic systems for studying actin-based motility. Curr Biol. 2003;13:R734–44.

    CAS  PubMed  Google Scholar 

  62. Cossart P, Lecuit M. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 1998;17:3797–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Karasawa S, Araki T, Yamamoto-Hino M, Miyawaki A. A Green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem. 2003;278:34167–71.

    CAS  PubMed  Google Scholar 

  64. Faivre D, Schüler D. Magnetotactic bacteria and magnetosomes. Chem Rev. 2008;108:4875–98.

    CAS  PubMed  Google Scholar 

  65. Naik RR, Jones SE, Murray CJ, McAuliffe JC, Vaia RA, Stone MO. Peptide templates for nanoparticle synthesis derived from polymerase chain reaction-driven phage display. Adv Funct Mater. 2004;14:25–30.

    CAS  Google Scholar 

  66. Karsenti E. Self-organization in cell biology: a brief history. Nat Rev Mol Cell Biol. 2008;9:255–62.

    CAS  Google Scholar 

  67. Needleman D, Dogic Z. Active matter at the interface between materials science and cell biology. Nat Rev Mater. 2017;2:17048.

    CAS  Google Scholar 

  68. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–65.

    CAS  PubMed  Google Scholar 

  69. Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9:790–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Steinmetz MO, Prota AE. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol. 2018;28:776–92.

    CAS  PubMed  Google Scholar 

  71. Borowiak M, Nahaboo W, Reynders M, Nekolla K, Jalinot P, Hasserodt J, et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell. 2015;162:403–11.

    CAS  PubMed  Google Scholar 

  72. Müller-Deku A, Meiring JCM, Loy K, Kraus Y, Heise C, Bingham R, et al. Photoswitchable paclitaxel-based microtubule stabilisers allow optical control over the microtubule cytoskeleton. Nat Commun. 2020;11:4640.

    PubMed  PubMed Central  Google Scholar 

  73. Gao L, Meiring JCM, Heise C, Rai A, Müller-Deku A, Akhmanova A, et al. Photoswitchable epothilone-based microtubule stabilisers allow GFP-imaging-compatible, optical control over the microtubule cytoskeleton. Angew Chem Int Ed. 2022;61:e202114614.

    CAS  Google Scholar 

  74. Gao L, Meiring JCM, Varady A, Ruider IE, Heise C, Wranik M, et al. In vivo photocontrol of microtubule dynamics and integrity, migration and mitosis, by the potent GFP-imaging-compatible photoswitchable reagents SBTubA4P and SBTub2M. J Am Chem Soc. 2022;144:5614–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kirchner S, Leistner A-L, Gödtel P, Seliwjorstow A, Weber S, Karcher J, et al. Hemipiperazines as peptide-derived molecular photoswitches with low-nanomolar cytotoxicity. Nat Commun. 2022;13:6066.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, et al. DNA-assisted swarm control in a biomolecular motor system. Nat Commun. 2018;9:453.

    PubMed  PubMed Central  Google Scholar 

  77. Akter M, Keya JJ, Kayano K, Kabir AMR, Inoue D, Hess H, et al. Cooperative cargo transportation by a swarm of molecular machines. Sci Robot. 2022;7:eabm0677.

    CAS  Google Scholar 

  78. Ishii S, Akter M, Murayama K, Kabir AMR, Asanuma H, Sada K, et al. Kinesin motors driven microtubule swarming triggered by UV light. Polym J. 2022;54:1501–7.

    CAS  Google Scholar 

  79. Klajn R. Spiropyran-based dynamic materials. Chem Soc Rev. 2014;43:148–84.

    CAS  PubMed  Google Scholar 

  80. Gao Y, Shi J, Yuan D, Xu B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat Commun. 2012;3:1033.

    PubMed  Google Scholar 

  81. Tanaka A, Fukuoka Y, Morimoto Y, Honjo T, Koda D, Goto M, et al. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J Am Chem Soc. 2015;137:770–5.

    CAS  PubMed  Google Scholar 

  82. Onogi S, Shigemitsu H, Yoshii T, Tanida T, Ikeda M, Kubota R, et al. In situ real-time imaging of self-sorted supramolecular nanofibres. Nat Chem. 2016;8:743–52.

    CAS  PubMed  Google Scholar 

  83. Miki T, Nakai T, Hashimoto M, Kajiwara K, Tsutsumi H, Mihara H. Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nat Commun. 2021;12:3412.

    CAS  PubMed Central  Google Scholar 

  84. Yaguchi A, Oshikawa M, Watanabe G, Hiramatsu H, Uchida N, Hara C, et al. Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration. Nat Commun. 2021;12:6623.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hauser CAE, Zhang S. Designer self-assembling peptide nanofiber biological materials. Chem Soc Rev. 2010;39:2780–90.

    CAS  PubMed  Google Scholar 

  86. Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, et al. Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev. 2010;39:3480–98.

    CAS  PubMed  Google Scholar 

  87. Sato K, Hendricks MP, Palmer LC, Stupp SI. Peptide supramolecular materials for therapeutics. Chem Soc Rev. 2018;47:7539–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, et al. Molecularly stimuli-responsive self-assembled peptide nanoparticles for targeted imaging and therapy. ACS Nano. 2023;17:8004–25.

    CAS  PubMed  Google Scholar 

  89. Shigenaga A, Tsuji D, Nishioka N, Tsuda S, Itoh K, Otaka A. Synthesis of a stimulus-responsive processing device and its application to a nucleocytoplasmic shuttle peptide. ChemBioChem. 2007;8:1929–31.

    CAS  Google Scholar 

  90. Shigenaga A, Yamamoto J, Nishioka N, Otaka A. Enantioselective synthesis of stimulus-responsive amino acid via asymmetric α-amination of aldehyde. Tetrahedron. 2010;66:7367–72.

    CAS  Google Scholar 

  91. Furutani M, Uemura A, Shigenaga A, Komiya C, Otaka A, Matsuura K. A photoinduced growth system of peptide nanofibres addressed by DNA hybridization. Chem Commun. 2015;51:8020–2.

    CAS  Google Scholar 

  92. Inaba H, Uemura A, Morishita K, Kohiki T, Shigenaga A, Otaka A, et al. Light-induced propulsion of a giant liposome driven by peptide nanofibre growth. Sci Rep. 2018;8:6243.

    PubMed Central  Google Scholar 

  93. Inaba H, Hatta K, Matsuura K. Directional propulsion of DNA microspheres based on light-induced asymmetric growth of peptide nanofibers. ACS Appl Bio Mater. 2021;4:5425–34.

    CAS  Google Scholar 

  94. Matsuura K, Yamashita T, Igami Y, Kimizuka N. ‘Nucleo-nanocages’: designed ternary oligodeoxyribonucleotides spontaneously form nanosized DNA cages. Chem Commun. 2003;9:376–7.

  95. Matsuura K, Masumoto K, Igami Y, Fujioka T, Kimizuka N. In situ observation of spherical DNA assembly in water and the controlled release of bound dyes. Biomacromolecules. 2007;8:2726–32.

    CAS  Google Scholar 

  96. Inaba H, Yamamoto T, Iwasaki T, Kabir AMR, Kakugo A, Sada K, et al. Fluorescent Tau-derived peptide for monitoring microtubules in living cells. ACS Omega. 2019;4:11245–50.

    CAS  PubMed Central  Google Scholar 

  97. Inaba H, Matsuura K. Live-cell fluorescence imaging of microtubules by using a Tau-derived peptide. In: Kim S-B, editor. Live cell imaging: methods and protocols. New York, NY: Springer; 2021. p. 169–79.

  98. Inaba H, Oikawa K, Ishikawa K, Kodama Y, Matsuura K, Numata K. Binding of Tau-derived peptide-fused GFP to plant microtubules in Arabidopsis thaliana. PLoS ONE. 2023;18:e0286421.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Joshi FM, Viar GA, Pigino G, Drechsler H, Diez S. Fabrication of high aspect ratio gold nanowires within the microtubule lumen. Nano Lett. 2022;22:3659–67.

    CAS  PubMed  Google Scholar 

  100. Nihongaki Y, Matsubayashi HT, Inoue T. A molecular trap inside microtubules probes luminal access by soluble proteins. Nat Chem Biol. 2021;17:888–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Keber FC, Loiseau E, Sanchez T, DeCamp SJ, Giomi L, Bowick MJ, et al. Topology and dynamics of active nematic vesicles. Science. 2014;345:1135–9.

    CAS  PubMed Central  Google Scholar 

  102. Sato Y, Hiratsuka Y, Kawamata I, Murata S, Nomura SM. Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci Robot. 2017;2:eaal3735.

    PubMed  Google Scholar 

  103. Steinkühler J, Knorr RL, Zhao Z, Bhatia T, Bartelt SM, Wegner S, et al. Controlled division of cell-sized vesicles by low densities of membrane-bound proteins. Nat Commun. 2020;11:905.

    PubMed  PubMed Central  Google Scholar 

  104. Li C, Zhang X, Yang B, Wei F, Ren Y, Mu W, et al. Reversible deformation of artificial cell colonies triggered by actin polymerization for muscle behavior mimicry. Adv Mater. 2022;34:2204039.

    CAS  Google Scholar 

  105. Ganar KA, Honaker LW, Deshpande S. Shaping synthetic cells through cytoskeleton-condensate-membrane interactions. Curr Opin Colloid Interface Sci. 2021;54:101459.

    CAS  Google Scholar 

  106. Liang Y, Ogawa S, Inaba H, Matsuura K. Dramatic morphological changes in liposomes induced by peptide nanofibers reversibly polymerized and depolymerized by the photoisomerization of spiropyran. Front Mol Biosci. 2023;10:1137885.

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

I sincerely thank Prof. Kazunori Matsuura (Tottori University, Japan) and the colleagues and students of Matsuura Laboratory, especially those who are listed in the cited references, for their intensive efforts and achievements. I appreciate Dr. Arif Md. Rashedul Kabir, Prof. Kazuki Sada (Hokkaido University, Japan), and Prof. Akira Kakugo (Kyoto University, Japan) for their continuous support of the experiments, such as the motility assay of microtubules. I appreciate Dr. Takashi Iwasaki (Tottori University, Japan) for help with the protein expression and cell experiments. I appreciate Dr. Muneyoshi Ichikawa (Fudan University, China) and Prof. Tomoya Tsukazaki (Nara Institute of Science and Technology, Japan) for the EM measurements of microtubules and Dr. Hideki Shigematsu (Japan Synchrotron Radiation Research Institute, Japan) for the help with the cryo-EM measurements of microtubules. I appreciate Dr. Tomonori Tamura and Prof. Itaru Hamachi (Kyoto University, Japan) for the analysis of photoaffinity labeling. I appreciate Dr. Kazusato Oikawa and Prof. Keiji Numata (Kyoto University, Japan) for the analysis of protein expression in plants. I appreciate Prof. Akira Shigenaga (Fukuyama University, Japan) and Prof. Akira Otaka (Tokushima University, Japan) for providing photocleavable amino acids. This work was supported by KAKENHI (No. 17K14517 and 19K15699 for HI) from the Japan Society for the Promotion of Science (JSPS), ACT-X (JPMJAX2012 for HI) and the FOREST Program (JPMJFR2034 for HI) from the Japan Science and Technology Agency (JST), the Inamori Foundation, the Konica Minolta Science and Technology Foundation for Konica Minolta Imaging Science Encouragement Award, the Iketani Science and Technology Foundation, and the Kato Memorial Bioscience Foundation. I thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Inaba.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inaba, H. Construction of functional microtubules and artificial motile systems based on peptide design. Polym J 55, 1261–1274 (2023). https://doi.org/10.1038/s41428-023-00838-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00838-w

Search

Quick links