Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Unified explanation for self-assembly of polymer-brush-modified nanoparticles in ionic liquids

Abstract

We determined the higher-order structures of polymer-brush-modified nanoparticles (PSiPs) in ionic liquids and explained the self-assembled structures as functions of the PSiP concentrations and brush lengths. The two types of brushes applied herein exhibited comparable structure formation patterns, suggesting that self-assembly of the PSiPs was entropy-driven. The crystallization threshold concentration of the PSiPs was understood through the Kirkwood–Alder transition in the assembly by considering the effective particle sizes. The crystal structure of the PSiP was characterized as a random hexagonal close-packed structure in the concentrated-polymer-brush regime, which exhibited the characteristics of hard spheres. In contrast, face-centered cubic (fcc) and body-centered cubic structures were observed in the semidilute-polymer-brush regime, reflecting softening of the interparticle potential. In addition, formation of the fcc structure was possibly due to partial compression and an imbalance in the swollen brush layer caused by the increased brush length and particle concentration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Holtz JH, Asher SA. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature. 1997;389:829–32. https://doi.org/10.1038/39834

    Article  CAS  PubMed  Google Scholar 

  2. Boden A, Bhave M, Wang PY, Jadhav S, Kingshott P. Binary Colloidal Crystal Layers as Platforms for Surface Patterning of Puroindoline-Based Antimicrobial Peptides. ACS Appl Mater Interfac. 2018;10:2264–74. https://doi.org/10.1021/acsami.7b10392

    Article  CAS  Google Scholar 

  3. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987;58:2059–62. https://doi.org/10.1103/PhysRevLett.58.2059

    Article  CAS  PubMed  Google Scholar 

  4. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987;58:2486–9. https://doi.org/10.1103/PhysRevLett.58.2486

    Article  CAS  PubMed  Google Scholar 

  5. Weissman JM, Sunkara HB, Tse AS, Asher SA. Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials. Science. 1996;274:959–60. https://doi.org/10.1126/science.274.5289.959

    Article  CAS  PubMed  Google Scholar 

  6. Yang HS, Jang J, Lee BS, Kang TH, Park JJ, Yu WR. Redox-Triggered Coloration Mechanism of Electrically Tunable Colloidal Photonic Crystals. Langmuir. 2017;33:9057–65. https://doi.org/10.1021/acs.langmuir.7b01919

    Article  CAS  PubMed  Google Scholar 

  7. Lawrence JR, Ying Y, Jiang P, Foulger SH. Dynamic Tuning of Organic Lasers with Colloidal Crystals. Adv Mater. 2006;18:300–3. https://doi.org/10.1002/adma.200501833

    Article  CAS  Google Scholar 

  8. Palberg T. Crystallization kinetics of repulsive colloidal spheres. J Phys: Condens Matter. 1999;11:R323–R360. https://doi.org/10.1088/0953-8984/11/28/201

    Article  CAS  Google Scholar 

  9. Palberg T. Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J Phys: Condens Matter. 2014;26:333101 https://doi.org/10.1088/0953-8984/26/33/333101

    Article  CAS  PubMed  Google Scholar 

  10. Pusey PN, van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature. 1986;320:340–2. https://doi.org/10.1038/320340a0

    Article  CAS  Google Scholar 

  11. Kegel WK, van Blaaderen A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science. 2000;287:290–3. https://doi.org/10.1126/science.287.5451.290

    Article  CAS  PubMed  Google Scholar 

  12. Vanmegen W, Underwood SM. Change in crystallization mechanism at the glass transition of colloidal spheres. Nature. 1993;362:616–8. https://doi.org/10.1038/362616a0

    Article  CAS  Google Scholar 

  13. Kose A, Hachisu S. Kirkwood–Alder transition in monodisperse latexes. I. Nonaqueous systems. J Coll Interfac Sci. 1974;46:460–9. https://doi.org/10.1016/0021-9797(74)90056-3

    Article  CAS  Google Scholar 

  14. Cheng ZD, Russell WB, Chaikin PM. Controlled growth of hard-sphere colloidal crystals. Nature. 1999;401:893–5. https://doi.org/10.1038/44785

    Article  CAS  Google Scholar 

  15. Zhu JX, Li M, Rogers R, Meyer W, Ottewill RH, Russell WB, et al. Crystallization of hard-sphere colloids in microgravity. Nature. 1997;387:883–5. https://doi.org/10.1038/43141

    Article  CAS  Google Scholar 

  16. Hachisu S, Kobayashi Y, Kose A. Phase separation in monodisperse latexes. J Colloid Interfac Sci. 1973;42:342–8. https://doi.org/10.1016/0021-9797(73)90298-1

    Article  CAS  Google Scholar 

  17. Hachisu S, Takano K. Pressure of disorder to order transition in monodisperse latex. Adv Colloid Interfac Sci. 1982;16:233–52. https://doi.org/10.1016/0001-8686(82)85018-5

    Article  CAS  Google Scholar 

  18. Sogami IS, Yoshiyama T. Kossel line analysis on crystallization in colloidal suspensions. Phase Transitions. 1990;21:171–82. https://doi.org/10.1080/01411599008206889

    Article  CAS  Google Scholar 

  19. Williams R, Crandall RS. The structure of crystallized suspensions of polystyrene spheres. Phys Lett A. 1974;48:225–6. https://doi.org/10.1016/0375-9601(74)90555-6

    Article  CAS  Google Scholar 

  20. Clark NA, Hurd AJ, Ackerson BJ. Single colloidal crystals. Nature. 1979;281:57–60. https://doi.org/10.1038/281057a0

    Article  CAS  Google Scholar 

  21. Yoshida H, Yamanaka J, Koga T, Ise N, Hashimoto T. Novel crystallization process in dilute ionic colloids. Langmuir. 1998;14:569–74. https://doi.org/10.1021/la970766l

    Article  CAS  Google Scholar 

  22. Yoshida H, Ito K, Ise N. Localized ordered structure in polymer latex suspensions as studied by a confocal laser scanning microscope. Phys Rev B. 1991;44:435–8. https://doi.org/10.1103/PhysRevB.44.435

    Article  CAS  Google Scholar 

  23. Hiltner PA, Krieger IM. Diffraction of light by ordered suspensions. J Phys Chem. 1969;73:2386–9. https://doi.org/10.1021/j100727a049

    Article  CAS  Google Scholar 

  24. Okubo T. Polymer colloidal crystals. Prog Polym Sci. 1993;18:481–517. https://doi.org/10.1016/0079-6700(93)90015-5

    Article  CAS  Google Scholar 

  25. Sirota EB, Ou-Yang HD, Sinha SK, Chaikin PM, Axe JD, Fujii Y. Complete phase diagram of a charged colloidal system: A synchro- tron x-ray scattering study. Phys Rev Lett. 1989;62:1524–7. https://doi.org/10.1103/PhysRevLett.62.1524

    Article  CAS  PubMed  Google Scholar 

  26. Monovoukas Y, Gast AP. The experimental phase diagram of charged colloidal suspensions. J Coll Interfac Sci. 1989;128:533–48. https://doi.org/10.1016/0021-9797(89)90368-8

    Article  CAS  Google Scholar 

  27. Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T. Structure and Properties of High- Density Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization. Adv Polym Sci. 2006;197:1–45. https://doi.org/10.1007/12_063

    Article  CAS  Google Scholar 

  28. Kobayashi M, Terayama Y, Kikuchi M, Takahara A. Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups. Soft Matter. 2013;9:5138–48. https://doi.org/10.1039/c3sm27700c

    Article  CAS  Google Scholar 

  29. Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, et al. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev. 2009;109:5437–527. https://doi.org/10.1021/cr900045a

    Article  CAS  PubMed  Google Scholar 

  30. Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T. Controlled Graft Polymerization of Methyl Methacrylate on Silicon Substrate by the Combined Use of the Langmuir−Blodgett and Atom Transfer Radical Polymerization Techniques. Macromolecules. 1998;31:5934–6. https://doi.org/10.1021/ma980240n

    Article  CAS  Google Scholar 

  31. Yamamoto S, Ejaz M, Tsujii Y, Matsumoto M, Fukuda T. Surface Interaction Forces of Well-Defined, High-Density Polymer Brushes Studied by Atomic Force Microscopy. 1. Effect of Chain Length. Macromolecules. 2000;33:5602–7. https://doi.org/10.1021/ma991733a

    Article  CAS  Google Scholar 

  32. Yamamoto S, Ejaz M, Tsujii Y, Fukuda T. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 2 Effect of graft density. Macromolecules. 2000;33:5608–12. https://doi.org/10.1021/ma991988o

    Article  CAS  Google Scholar 

  33. Nomura A, Ohno K, Fukuda T, Sato T, Tsujii Y. Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent viscosity. Polym Chem. 2012;3:148–53. https://doi.org/10.1039/c1py00215e

    Article  CAS  Google Scholar 

  34. Yoshikawa C, Goto A, Tsujii Y, Fukuda T, Kimura T, Yamamoto K, et al. Protein Repellency of Well-Defined, Concentrated Poly(2-hydroxyethyl methacrylate) Brushes by the Size-Exclusion Effect. Macromolecules. 2006;39:2284–90. https://doi.org/10.1021/ma0520242

    Article  CAS  Google Scholar 

  35. Yoshikawa C, Goto A, Tsujii Y, Ishizuka N, Nakanishi K, Fukuda T. Surface interaction of well-defined, concentrated poly(2-hydroxyethyl methacrylate) brushes with proteins. J Polym Sci, Part A: Polym Chem. 2007;45:4795–803. https://doi.org/10.1002/pola.22224

    Article  CAS  Google Scholar 

  36. Ohno K, Morinaga T, Takeno S, Tsujii Y, Fukuda T. Suspensions of Silica Particles Grafted with Concentrated Polymer Brush: A New Family of Colloidal Crystals. Macromolecules. 2006;39:1245–9. https://doi.org/10.1021/ma0521708

    Article  CAS  Google Scholar 

  37. Ohno K, Morinaga T, Takeno S, Tsujii Y, Fukuda T. Suspensions of Silica Particles Grafted with Concentrated Polymer Brush: Effects of Graft Chain Length on Brush Layer Thickness and Colloidal Crystallization. Macromolecules. 2007;40:9143–50. https://doi.org/10.1021/ma071770z

    Article  CAS  Google Scholar 

  38. Morinaga T, Ohno K, Tsujii Y, Fukuda T. Structural Analysis of “Semisoft” Colloidal Crystals by Confocal Laser Scanning Microscopy. Macromolecules. 2008;41:3620–6. https://doi.org/10.1021/ma7028665

    Article  CAS  Google Scholar 

  39. Morinaga T, Ohno K, Tsujii Y, Fukuda T. Two-dimensional ordered arrays of monodisperse silica particles grafted with concentrated polymer brushes. Eur Polym J. 2007;43:243–8. https://doi.org/10.1016/j.eurpolymj.2006.02.012

    Article  CAS  Google Scholar 

  40. Huang Y, Morinaga T, Tai Y, Tsujii Y, Ohno K. Immobilization of semisoft colloidal crystals formed by polymer-brush-afforded hybrid particles. Langmuir. 2014;30:7304–12. https://doi.org/10.1021/la5011488

    Article  CAS  PubMed  Google Scholar 

  41. Huang Y, Takata A, Tsujii Y, Ohno K. Semisoft Colloidal Crystals in Ionic Liquids. Langmuir. 2017;33:7130–6. https://doi.org/10.1021/acs.langmuir.7b01449

    Article  CAS  PubMed  Google Scholar 

  42. Nakanishi Y, Ishige R, Ogawa H, Sakakibara K, Ohno K, Morinaga T, et al. USAXS analysis of concentration-dependent self-assembling of polymer- brush-modified nanoparticles in ionic liquid: [I] concentrated-brush regime. J Chem Phys. 2018;148:124902 https://doi.org/10.1063/1.5017552

    Article  CAS  PubMed  Google Scholar 

  43. Percus JK, Yevick GJ. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys Rev. 1958;110:1–13. https://doi.org/10.1103/PhysRev.110.1

    Article  CAS  Google Scholar 

  44. Wertheim MS. Exact Solution of the Percus–Yevick Integral Equation for Hard Spheres. Phys Rev Lett. 1963;10:321–3. https://doi.org/10.1103/PhysRevLett.10.321

    Article  Google Scholar 

  45. Lebowitz JL. Exact Solution of Generalized Percus–Yevick Equation for a Mixture of Hard Spheres. Phys Rev. 1964;133:A895–A899. https://doi.org/10.1103/PhysRev.133.A895

    Article  Google Scholar 

  46. Daoud M, Cotton JP. Star shaped polymers: a model for the conformation and its concentration dependence. J Phys (Paris). 1982;43:531–8. https://doi.org/10.1051/jphys:01982004303053100

    Article  CAS  Google Scholar 

  47. Zhulina EB, Birshtein TM, Borisov OV. Curved polymer and polyelectrolyte brushes beyond the Daoud-Cotton model. Eur Phys J E. 2006;20:243–56. https://doi.org/10.1140/epje/i2006-10013-5

    Article  CAS  PubMed  Google Scholar 

  48. Kalb J, Dukes D, Kumar SK, Hoy RS, Grest GS. End grafted polymernanoparticles in a polymeric matrix: Effect of coverage and curvature. Soft Matter. 2011;7:1418–25. https://doi.org/10.1039/c0sm00725k

    Article  CAS  Google Scholar 

  49. McConnell GA, Gast AP. Melting of Ordered Arrays and Shape Transitions in Highly Concentrated Diblock Copolymer Solutions. Macromolecules. 1997;30:435–44. https://doi.org/10.1021/ma961241n

    Article  CAS  Google Scholar 

  50. McConnell GA, Gast AP, Huang JS, Smith SD. Disorder-order transitions in soft sphere polymer micelles. Phys Rev Lett. 1993;71:2102–5. https://doi.org/10.1103/PhysRevLett.71.2102

    Article  CAS  PubMed  Google Scholar 

  51. Lodge TP, Pudil B, Hanley KJ. The Full Phase Behavior for Block Copolymers in Solvents of Varying Selectivity. Macromolecules. 2002;35:4707–17. https://doi.org/10.1021/ma0200975

    Article  CAS  Google Scholar 

  52. Hamley IW, Daniel C, Mingvanish W, Mai SM, Booth C, Messe L, et al. From Hard Spheres to Soft Spheres: The Effect of Copolymer Composition on the Structure of Micellar Cubic Phases Formed by Diblock Copolymers in Aqueous Solution. Langmuir. 2000;16:2508–14. https://doi.org/10.1021/la991035j

    Article  CAS  Google Scholar 

  53. Laurati M, Stellbrink J, Lund R, Willner L, Richter D, Zaccarelli E. Starlike micelles with starlike interactions: a quantitative evaluation of structure factors and phase diagram. Phys Rev Lett. 2005; 94. https://doi.org/10.1103/PhysRevLett.94.195504

  54. Laurati M, Stellbrink J, Lund R, Willner L, Zaccarelli E, Richter D. Asymmetric poly(ethylene-alt-propylene)-poly(ethylene oxide) micelles: A system with starlike morphology and interactions. Phys Rev E. 2007;76. https://doi.org/10.1103/PhysRevE.76.041503

  55. Pedersen JS. Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interfac Sci. 1997;70:171–210. https://doi.org/10.1016/s0001-8686(97)00312-6

    Article  CAS  Google Scholar 

  56. Hashimoto T. Principles and Applications of X-ray, Light and Neutron Scattering. Singapore: Springer Nature Singapore Pte Ltd.; 2022.

  57. Guinier A. X-ray Diffraction In Crystals, Imperfect Crystals, and Amorphous Bodies. New York: Dover; 1994.

  58. Loose W, Ackerson BJ. Model-calculations for the analysis of scattering data from layered structures. J Chem Phys. 1994;101:7211–20. https://doi.org/10.1063/1.468278

    Article  CAS  Google Scholar 

  59. Forster S, Timmann A, Konrad M, Schellbach C, Meyer A, Funari SS, et al. Scattering curves of ordered mesoscopic materials. J Phys Chem B. 2005;109:1347–60. https://doi.org/10.1021/jp0467494

    Article  CAS  PubMed  Google Scholar 

  60. Hoover WG, Ree FH. Use of Computer Experiments to Locate the Melting Transition and Calculate the Entropy in the Solid Phase. J Chem Phys. 1967;47:4873–8. https://doi.org/10.1063/1.1701730

    Article  CAS  Google Scholar 

  61. Alder BJ, Hoover WG, Young DA. Studies in Molecular Dynamics. V. High-Density Equation of State and Entropy for Hard Disks and Spheres. J Chem Phys. 1968;49:3688–96. https://doi.org/10.1063/1.1670653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by CREST, the Japan Science and Technology Agency, and an ICR Kyoto University Grant for Young Scientists. Synchrotron USAXS experiments were performed on BL03XU (Proposal Nos. 2017A1845 and 2017A7213), BL19B2 (Proposal Nos. 2014B1648, 2015A1718, and 2017B1638), and BL40B2 (Proposal Nos. 2014B1469 and 2022A1461) at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI). The authors thank Drs Taizo Kabe, Hiroyasu Masunaga, Masugu Sato, Takeshi Watanabe, Keiichi Osaka, and Noboru Ohta (JASRI/SPring-8) for their assistance with the BL03XU, BL19B2, and BL40B2 experiments. The authors acknowledge support from the Quantum Beam Analyses Alliance (QBAA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yohei Nakanishi, Mikihito Takenaka or Yoshinobu Tsujii.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakanishi, Y., Ishige, R., Ogawa, H. et al. Unified explanation for self-assembly of polymer-brush-modified nanoparticles in ionic liquids. Polym J 55, 1199–1209 (2023). https://doi.org/10.1038/s41428-023-00829-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00829-x

Search

Quick links