Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Characteristics of ethylenediamine tetra-acetic acid treatment on iron(III)-induced modified catechol chitosan hydrogels under different pH conditions

Abstract

Modified catechol chitosan was synthesized to examine the intricate connections between Fe(III) and catechol under different pH conditions. The conjugation of the catechol moieties, which determines the structure of the hydrogel, was evaluated by nuclear magnetic resonance spectroscopy and ultraviolet‒visible spectroscopy. The gel formation was well maintained by the dual cross-linking networks of the electrostatic interactions between catechol chitosan solution (CCS) and Fe3+ along with the covalent catechol-coupling-based coordinate bonds. Three pH conditions of 3, 5, and 7 were applied for ethylenediamine tetra-acetic acid (EDTA) treatment as a triggering factor in modifying the uniform hydrogel structure. The hydrogels demonstrated enhanced mechanical strength and cohesiveness at a pH of 5, and rheology analysis was used to determine the storage and loss moduli. Several analysis and characterization techniques were utilized to describe the cross-linking components and confirm the physical properties of the chitosan backbone polymer chain in the modified iron-induced hydrogel frameworks before and after EDTA treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schexnailder P, Schmidt G. Nanocomposite polymer hydrogels. Coll Polym Sci. 2009;287:1–11.

    CAS  Google Scholar 

  2. Döring A, Birnbaum W, Kuckling D. Responsive hydrogels–structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem Soc Rev 2013;42:7391–420.

    Google Scholar 

  3. Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5:20–43.

    CAS  PubMed  Google Scholar 

  4. Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Front Bioeng Biotech. 2022;10:629.

    Google Scholar 

  5. Zhao W, Jin X, Cong Y, Liu Y, Fu J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Tech Biotech. 2013;88:327–39.

    CAS  Google Scholar 

  6. Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8:607–26.

    PubMed  PubMed Central  Google Scholar 

  7. Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules 2019;24:603.

    PubMed  PubMed Central  Google Scholar 

  8. Bolla PK, Rodriguez VA, Kalhapure RS, Kolli CS, Andrews S, Renukuntla J. A review on pH and temperature responsive gels and other less explored drug delivery systems. J Drug Deliv Sci Technol. 2018;46:416–35.

    CAS  Google Scholar 

  9. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.

    Google Scholar 

  10. Leal D, De Borggraeve W, Encinas MV, Matsuhiro B, Müller R. Preparation and characterization of hydrogels based on homopolymeric fractions of sodium alginate and PNIPAAm. Carbohydr Polym. 2013;92:157–66.

    CAS  Google Scholar 

  11. Herrick WG, Nguyen TV, Sleiman M, McRae S, Emrick TS, Peyton SR. PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology. Biomacromolecules. 2013;14:2294–304.

    CAS  PubMed  Google Scholar 

  12. Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8:217–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H. Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromol. 2013;14:297–301.

    CAS  Google Scholar 

  14. Song L, Li L, He T, Wang N, Yang S, Yang X, et al. Peritoneal adhesion prevention with a biodegradable and injectable N, O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model. Sci Rep. 2016;6:1–13.

    Google Scholar 

  15. Jeon C, Höll WH. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res. 2003;37:4770–80.

    CAS  PubMed  Google Scholar 

  16. Kuroiwa T, Takada H, Shogen A, Saito K, Kobayashi I, Uemura K, et al. Cross-linkable chitosan-based hydrogel microbeads with pH-responsive adsorption properties for organic dyes prepared using size-tunable microchannel emulsification technique. Colloids Surf A Physicochem Eng Asp. 2017;514:69–78.

    CAS  Google Scholar 

  17. Park JW, Choi KH, Park KK. Acid-based equilibria and related properties of chitosan. Bull Korean Chem Soc. 1983;4:68–72.

    CAS  Google Scholar 

  18. Peniche C, Argüelles‐Monal W, Peniche H, Acosta N. Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol Biosci. 2003;3:511–20.

    CAS  Google Scholar 

  19. Ostrowska-Czubenko J, Gierszewska-Drużyńska M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr Polym. 2009;77:590–8.

    CAS  Google Scholar 

  20. Ravishankar K, Dhamodharan R. Advances in chitosan-based hydrogels: evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. React Funct Polym. 2020;149:104517.

    CAS  Google Scholar 

  21. Fan X, Fang Y, Zhou W, Yan L, Xu Y, Zhu H, et al. Mussel foot protein inspired tough tissue-selective underwater adhesive hydrogel. Mater Horiz. 2021;8:997–1007.

    CAS  PubMed  Google Scholar 

  22. Lee D, Park JP, Koh MY, Kim P, Lee J, Shin M, et al. Chitosan-catechol: a writable bioink under serum culture media. Biomater Sci. 2018;6:1040–7.

    CAS  PubMed  Google Scholar 

  23. Zheng Z, Bian S, Li Z, Zhang Z, Liu Y, Zhai X, et al. Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing. Carbohydr Polym. 2020;249:116826.

    CAS  PubMed  Google Scholar 

  24. Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol. 2008;43:401–14.

    CAS  PubMed  Google Scholar 

  25. Yavvari PS, Srivastava A. Robust, self-healing hydrogels synthesised from catechol rich polymers. J Mater Chem B. 2015;3:899–910.

    CAS  PubMed  Google Scholar 

  26. Wang K, Buschle-Diller G, Misra RDK. Chitosan-based injectable hydrogels for biomedical applications. Mater Technol. 2015;30:198–205.

    CAS  Google Scholar 

  27. Ren Y, Zhao X, Liang X, Ma PX, Guo B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int J Biol Macromol. 2017;105:1079–87.

  28. Xiong S, Duan L, Cheng X. A novel coumarin-chitosan fluorescent hydrogel for the selective identification of Fe 2+ in aqueous systems. Polym Chem. 2020;11:6066–72.

    CAS  Google Scholar 

  29. DeForest CA, Anseth KS. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat Chem. 2011;3:925–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Hu W, Zhang Y, Tan H, Yan X, Zhao L, et al. pH and glucose dually responsive injectable hydrogel prepared by in situ crosslinking of phenylboronic modified chitosan and oxidized dextran. J Polym Sci Part A Polym Chem. 2015;53:1235–44.

    CAS  Google Scholar 

  31. Lee HA, Park E, Lee H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv Mater. 2020;32:1907505.

    CAS  Google Scholar 

  32. Guo Z, Ni K, Wei D, Ren Y. Fe 3+-induced oxidation and coordination cross-linking in catechol-chitosan hydrogels under acidic pH conditions. RSC Adv. 2015;5:37377–3738433.

    CAS  Google Scholar 

  33. Lee J, Chang K, Kim S, Gite V, Chung H, Sohn D. Phase controllable hyaluronic acid hydrogel with iron (III) ion–catechol induced dual cross-linking by utilizing the gap of gelation kinetics. Macromolecules. 2016;49:7450–9.

    CAS  Google Scholar 

  34. Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D, et al. A validated 1 H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal. 2003;32:1149–58.

    CAS  PubMed  Google Scholar 

  35. Kim K, Ryu JH, Lee DY, Lee H. Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater Sci. 2013;1:783–90.

    CAS  PubMed  Google Scholar 

  36. Zhang D, Ouyang Q, Hu Z, Lu S, Quan W, Li P, et al. Catechol functionalized chitosan/active peptide microsphere hydrogel for skin wound healing. Int J Biol Macromol. 2021;173:591–606.

    CAS  PubMed  Google Scholar 

  37. Panja S, Hanson S, Wang C. EDTA-inspired polydentate hydrogels with exceptionally high heavy metal adsorption capacity as reusable adsorbents for wastewater purification. ACS Appl Mater Interfaces. 2020;12:25276–85.

    CAS  Google Scholar 

  38. Ma J, Zhou G, Chu L, Liu Y, Liu C, Luo S, et al. Efficient removal of heavy metal ions with an EDTA functionalized chitosan/polyacrylamide double network hydrogel. ACS Sustain Chem Eng. 2017;5:843–51.

    CAS  Google Scholar 

  39. Zeng H, Hwang DS, Israelachvili JN, Waite JH. Strong reversible Fe 3+-mediated bridging between dopa-containing protein films in water. Proc Natl Acad Sci USA. 2010;107:12850–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen J, Zhou Y, Li S, Gu P, Xue G. Hydrogel-coated Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for degradation of phenol. J Mater Sci. 2019;54:10684–94.

    CAS  Google Scholar 

  41. Kaur L, Raj R, Thakur AK, Singh I. Development of chitosan-catechol conjugates as mucoadhesive polymer: assessment of acute oral toxicity in mice. J Environ Anal Health Toxicol. 2020;35;2020014.

  42. Hefni HH, Azzam EM, Badr EA, Hussein M, Tawfik SM. Synthesis, characterization and anticorrosion potentials of chitosan-g-PEG assembled on silver nanoparticles. Int J Biol Macromol. 2016;83:297–305.

    CAS  PubMed  Google Scholar 

  43. Repo E, Malinen L, Koivula R, Harjula R, Sillanpää M. Capture of Co (II) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan. J Hazard Mater. 2011;187:122–32.

    CAS  PubMed  Google Scholar 

  44. Kavianinia I, Plieger PG, Kandile NG, Harding DR. Fixed-bed column studies on a modified chitosan hydrogel for detoxification of aqueous solutions from copper (II). Carbohydr Polym. 2012;90:875–86.

    CAS  PubMed  Google Scholar 

  45. Monteiro OA Jr, Airoldi C. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol. 1999;26:119–28.

    CAS  PubMed  Google Scholar 

  46. Islam A, Riaz M, Yasin T. Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. Int J Biol Macromol. 2013;59:119–24.

    CAS  PubMed  Google Scholar 

  47. Wang S, Zhang Z, Chen B, Shao J, Guo Z. Self‐healing hydrogel of poly (vinyl alcohol)/graphite oxide with p H‐sensitive and enhanced thermal properties. J Appl Polym Sci. 2018;135:46143.

    Google Scholar 

  48. Narkar AR, Cannon E, Yildirim-Alicea H, Ahn K. Catechol-functionalized chitosan: optimized preparation method and its interaction with Mucin. Langmuir 2019;35:16013–23.

    CAS  PubMed  Google Scholar 

  49. El-hefian EA, Yahaya AH. Rheological study of chitosan and its blends: an overview. Maejo Int J Sci Technol. 2010;4:210–20.

    CAS  Google Scholar 

  50. Soares PI, Machado D, Laia C, Pereira LC, Coutinho JT, Ferreira IMM, et al. Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Carbohydr Polym. 2016;149:382–90.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program administered through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education (2020R1A6A1A06046728, 2022R1A2C1010580, and 2022R1A6C101A779-23).

Author information

Authors and Affiliations

Authors

Contributions

NQN: Conceptualization, Investigation, Formal analysis, Writing-original draft. JR: Writing-review and editing. GK: Writing-review and editing. DS: Supervision, Writing-review and editing.

Corresponding author

Correspondence to Daewon Sohn.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.Q., Ryu, J., Kolekar, G. et al. Characteristics of ethylenediamine tetra-acetic acid treatment on iron(III)-induced modified catechol chitosan hydrogels under different pH conditions. Polym J 55, 1335–1345 (2023). https://doi.org/10.1038/s41428-023-00827-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00827-z

Search

Quick links