Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CpTiCl3/MAO-catalyzed polymerization and copolymerization with isoprene and [3]dendralene derivatives

Abstract

Coordination polymerization of a series of 2-substituted-[3]dendralenes, i.e., phenyl- (P3D), hexyl- (H3D), and trimethylsilyl-substituted [3]dendralenes (TMS3D), was investigated. No polymerization was observed for TMS3D, whereas P3D polymerized by CpTiCl3 as a catalyst and modified methylaluminoxane as an auxiliary catalyst to generate polymers that became insoluble in the process of isolation. Additionally, the coordination polymerization of H3D was conducted using a CpTiCl3/modified methylaluminoxane catalyst to produce polyH3D with mainly a trans-4,6 structure, which differs from that of the polymer obtained via anionic polymerization. The copolymerization of isoprene with H3D was also examined, and it was found that the reaction proceeded in a random fashion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Szwarc M, Levy M, Milkovich R. Polymerization initiated by electron transfer to monomer. a new method of formation of block polymers 1. J Am Chem Soc. 1956;78:2656–7.

    Article  CAS  Google Scholar 

  2. Szwarc M. ‘Living’ polymers. Nature 1956;178:1168–9.

    Article  CAS  Google Scholar 

  3. Ziegler K, Gellert HG, Zosel K, Lehmkuhl W, Pfohl W. Herstellung von Aluminiumalkylen und Dialkylaluminiumhydriden. Angew Chem. 1955;67:424.

    Google Scholar 

  4. Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth RM. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew Chem Int Ed Engl. 1995;34:1143–70.

    Article  CAS  Google Scholar 

  5. Johnson LK, Killian CM, Brookhart M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and .alpha.-Olefins. J Am Chem Soc. 1995;117:6414–5.

    Article  CAS  Google Scholar 

  6. Scollard JD, McConville DH, Payne NC, Vittal JJ. Polymerization of α-olefins by chelating diamide complexes of titanium. Macromolecules. 1996;29:5241.

    Article  CAS  Google Scholar 

  7. Britovsek GJP, Gibson VC, McTavish SJ, Solan GA,White AJP, Williams DJ, et al. Novel olefin polymerization catalysts based on iron and cobalt. Chem Commun. 1998;849.

  8. Wang C, Friedrich S, Younkin TR, Li RT, Grubbs RH, Bansleben DA, et al. Neutral nickel(II)-based catalysts for ethylene polymerization. Organometallics. 1998;17:3149–51.

    Article  CAS  Google Scholar 

  9. Younkin TR, Connor EF, Henderson JI, Friedrich SK, Grubbs RH, Bansleben DA. Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms. Science. 2000;287:460–2.

    Article  CAS  PubMed  Google Scholar 

  10. Doi Y, Ueki S, Keii T. “Living” coordination polymerization of propene initiated by the soluble V(acac)3-Al(C2H5)2Cl system. Macromolecules. 1979;12:814–9.

    Article  CAS  Google Scholar 

  11. Ziegler K, Holzkamp E, Breil H, Martin H. Das Mülheimer Normaldruck-Polyäthylen-Verfahren. Angew Chem. 1955;67:541–7.

    Article  CAS  Google Scholar 

  12. Small BL, Brookhart M, Bennett AMA. Highly active iron and cobalt catalysts for the polymerization of ethylene. J Am Chem Soc. 1998;120:4049–50.

    Article  CAS  Google Scholar 

  13. Scollard JD, McConville DH. Living polymerization of α-olefins by chelating diamide complexes of titanium. J Am Chem Soc. 1996;118:10008–9.

    Article  CAS  Google Scholar 

  14. Scollard JD, McConville DH, Rettig SJ. Living polymerization of α-olefins: catalyst precursor deactivation via the unexpected cleavage of a B−C6F5 bond. Organometallics. 1997;16:1810–2.

    Article  CAS  Google Scholar 

  15. Scollard JD, McConville DH, Vittal JJ. Bulky chelating diamide complexes of zirconium: synthesis, structure, and reactivity of d0 alkyl derivatives. Organometallics. 1997;16:4415–20.

    Article  CAS  Google Scholar 

  16. Doi Y, Keii T. Synthesis of “living” polyolefins with soluble Ziegler-Natta catalysts and application to block copolymerization. Adv Polym Sci. 1986;73/74:201–48.

    Article  Google Scholar 

  17. Takagi T, Toda T, Miya M, Takenaka K. DFT study on the anionic polymerization of phenyl-substituted [3]dendralene derivatives: reactivities of monomer and chain end carbanion. Polym J. 2022;54:643–52.

    Article  CAS  Google Scholar 

  18. Takagi T, Toda T, Miya M, Takenaka K. Stable and highly regioselective anionic polymerization of (Z)-1-phenyl[3]dendralene. Macromolecules. 2021;54:4326–32.

    Article  CAS  Google Scholar 

  19. Takamura Y, Toda T, Miya M, Takenaka K, Shiomi T. Anionic polymerization of 2-phenyl[3]dendralene using lithium-based initiators. e-J Soft Mater. 2019;54, just accepted.

  20. Ricci G, Italia S, Giarrusso A, Porri L. Polymerization of 1,3-dienes with the soluble catalyst system methylaluminoxanes-[CpTiCl3]. Influence of monomer structure on polymerization stereospecificity. J Organometal Chem. 1993;451:67.

    Article  CAS  Google Scholar 

  21. Miyazawa A, Kase T, Shibuya T. Polymerization of isoprene with η5-C5H4(tert-Bu)TiCl3/MAO catalyst. J Polym Sci Part A Polym Chem. 2004;42:1841.

    Article  CAS  Google Scholar 

  22. Takamura Y, Takenaka K, Toda T, Takeshita H, Miya M, Shiomi T. Anionic polymerization of 2-Hexyl[3]dendralene. Macromol Chem Phys. 2018;219:1700046.

    Article  Google Scholar 

  23. Craig D, Shipman JJ, Fowler RB. The rate of reaction of maleic anhydride with 1,3-dienes as related to diene conformation. J Am Chem Soc. 1961;83:2885–91.

    Article  CAS  Google Scholar 

  24. Pragliola S, Milano G, Guerra G, Longo P. Stereoselective cyclopropanation by cyclocopolymerization of butadiene. J Am Chem Soc. 2002;124:3502–3.

    Article  CAS  Google Scholar 

  25. Choo TN, Waymouth RM. The dual-site alternating cyclocopolymerization of 1,3-butadiene with ethylene. J Am Chem Soc. 2003;125:8970–1.

    Article  CAS  Google Scholar 

  26. Longo P, Napoli M, Pragliola S, Costabile C, Milano G, Guerra G. Butadiene insertion and constitutional units in ethene copolymerizations by C2-symmetric metallocenes. Macromolecules. 2003;36:9067–74.

    Article  CAS  Google Scholar 

  27. Longo P, Pragliola S, Milano G, Guerra GE. Stereoregular 1,1 and 1,3 constitutional units from 1,3-butadiene in copolymerizations catalyzed by a highly hindered C2 symmetric metallocene. J Am Chem Soc. 2003;125:4799–803.

    Article  CAS  Google Scholar 

  28. Pragliola S, Costabile C, Magrino M, Napoli M, Longo P. Ethene/1,3-butadiene copolymerization in the presence of rac-(CH2-(3-tert-butyl-1-indenyl)2)ZrCl2/MAO catalytic system: study of the polymerization mechanism by using 13C-labeled 1,3-butadiene. Macromolecules. 2004;37:238–40.

    Article  CAS  Google Scholar 

  29. Thuilliez J, Ricard L, Nief F, Boisson F, Boisson C. ansa-Bis(fluorenyl)neodymium catalysts for cyclocopolymerization of ethylene with butadiene. Macromolecules. 2009;42:3774–9.

    Article  CAS  Google Scholar 

  30. Hou Z, Wakatsuki Y. Recent developments in organolanthanide polymerization catalysts. Coord Chem Rev. 2002;231:1–22.

    Article  CAS  Google Scholar 

  31. Coates GW. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem Rev. 2000;100:1223–52.

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Nishiura M, Hu L, Mori K, Hou Z. Alternating and random copolymerization of isoprene and ethylene catalyzed by cationic half-sandwich scandium alkyls. J Am Chem Soc. 2009;131:13870–82.

    Article  CAS  PubMed  Google Scholar 

  33. Resconi L, Cavallo L, Fait A, Piemontesi F. Selectivity in propene polymerization with metallocene catalysts. Chem Rev. 2000;100:1253–345.

    Article  CAS  PubMed  Google Scholar 

  34. Alt HG, Köppl A. Effect of the nature of metallocene complexes of group IV metals on their performance in catalytic ethylene and propylene polymerization. Chem Rev. 2000;100:1205–22.

    Article  CAS  PubMed  Google Scholar 

  35. Takenaka K, Amamoto S, Kishi H, Takeshita H, Miya M, Shiomi T. Anionic polymerization of 2-phenyl[3]dendralene and 2-(4-methoxyphenyl)[3]dendralene. Macromolecules 2013;46:7282–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Tosoh-Finechem Co. for generous donation of MMAO. This work was supported by a Grant-in-Aid for Young Scientists (B) (No. 17K17742 to TT) from JSPS and a Nagaoka University of Technology Presidential Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Toda.

Ethics declarations

Conflict of interest

The author declares no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toda, T., Takamura, Y. & Takenaka, K. CpTiCl3/MAO-catalyzed polymerization and copolymerization with isoprene and [3]dendralene derivatives. Polym J 55, 1275–1286 (2023). https://doi.org/10.1038/s41428-023-00825-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00825-1

Search

Quick links