Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polyurethanes containing platinum in the main chain: synthesis, structure and mechanofluorochromism

Abstract

Hydroxy-tethered platinum(II) complexes were synthesized and used as diol monomers for polyurethane synthesis. Polyurethanes with moderate molecular weights were obtained by conventional polyaddition with a diisocyanate. The polyurethane containing the platinum(II) complex substituted with t-Bu groups was soluble in common organic solvents, including CHCl3 and tetrahydrofuran. Segmented polyurethanes containing platinum(II) complex moieties were also synthesized using polytetrahydrofuran and 1,4-butanediol. These polyurethanes showed good elastic properties. The nonsegmented polyurethane exhibited distinguishable photoluminescence changes upon grinding in the solid state, while the segmented polyurethanes did not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Imato K, Otsuka H. Reorganizable and stimuli-responsive polymers based on dynamic carbon–carbon linkages in diarylbibenzofuranones. Polymer. 2018;137:395–413.

    Article  CAS  Google Scholar 

  2. Calvino C, Neumann L, Weder C, Schrettl S. Approaches to polymeric mechanochromic materials. J Polym Sci Part A: Polym Chem. 2017;55:640–52.

    Article  CAS  Google Scholar 

  3. Herbert KM, Schrettl S, Rowan SJ, Weder C. 50th anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials. Macromolecules. 2017;50:8845–70.

    Article  CAS  Google Scholar 

  4. Sagara Y, Yamane S, Mitani M, Weder C, Kato T. Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv Mater. 2016;28:1073–95.

    Article  CAS  PubMed  Google Scholar 

  5. Ciardelli F, Ruggeri G, Pucci A. Dye-containing polymers: methods for preparation of mechanochromic materials. Chem Soc Rev. 2013;42:857–70.

    Article  CAS  PubMed  Google Scholar 

  6. Lee CK, Davis DA, White SR, Moore JS, Sottos NR, Braun PV. Force-induced redistribution of a chemical equilibrium. J Am Chem Soc. 2010;132:16107–11.

    Article  CAS  PubMed  Google Scholar 

  7. Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, Potisek SL, et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature. 2009;459:68–72.

    Article  CAS  PubMed  Google Scholar 

  8. Lu Y, Aoki D, Sawada J, Kosuge T, Sogawa H, Otsuka H, et al. Visualization of the slide-ring effect: a study on movable cross-linking points using mechanochromism. Chem Commun. 2020;56:3361–64.

    Article  CAS  Google Scholar 

  9. Ishizuki K, Oka H, Aoki D, Goseki R, Otsuka H. Mechanochromic polymers that turn green upon the dissociation of diarylbibenzothiophenonyl: the missing piece toward rainbow mechanochromism. Chem Eur J. 2018;24:3170–73.

    Article  CAS  PubMed  Google Scholar 

  10. Imato K, Kanehara T, Nojima S, Ohishi T, Higaki Y, Takahara A, et al. Repeatable mechanochemical activation of dynamic covalent bonds in thermoplastic elastomers. Chem Commun. 2016;52:10482–85.

    Article  CAS  Google Scholar 

  11. Oka H, Imato K, Sato T, Ohishi T, Goseki R, Otsuka H. Enhancing mechanochemical activation in the bulk state by designing polymer architectures. ACS Macro Lett. 2016;5:1124–27.

    Article  CAS  PubMed  Google Scholar 

  12. Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, et al. Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew Chem Int Ed. 2015;54:6168–72.

    Article  CAS  Google Scholar 

  13. Sagara Y, Traeger H, Li J, Okado Y, Schrettl S, Tamaoki N, et al. Mechanically responsive luminescent polymers based on supramolecular cyclophane mechanophores. J Am Chem Soc. 2021;143:5519–25.

    Article  CAS  PubMed  Google Scholar 

  14. Traeger H, Sagara Y, Kiebala DJ, Schrettl S, Weder C. Folded perylene diimide loops as mechanoresponsive motifs. Angew Chem Int Ed. 2021;60:16191–99.

    Article  CAS  Google Scholar 

  15. Xue P, Ding J, Wang P, Lu R. Recent progress in the mechanochromism of phosphorescent organic molecules and metal complexes. J Mater Chem C. 2016;4:6688–706.

    Article  CAS  Google Scholar 

  16. Wenger OS. Vapochromism in organometallic and coordination complexes: chemical sensors for volatile organic compounds. Chem Rev. 2013;113:3686–733.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Chi Z, Zhang Y, Liu S, Xu J. Recent advances in mechanochromic luminescent metal complexes. J Mater Chem C. 2013;1:3376–90.

    Article  CAS  Google Scholar 

  18. Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, et al. Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat. Commun. 2013;4:2009.

    Article  PubMed  Google Scholar 

  19. Seki T, Ozaki T, Okura T, Asakura K, Sakon A, Uekusa H, et al. Interconvertible multiple photoluminescence color of a gold(I) isocyanide complex in the solid state: solvent-induced blue-shifted and mechano-responsive red-shifted photoluminescence. Chem Sci. 2015;6:2187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, et al. Reversible mechanochromic luminescence of [(C6F5Au)2(μ-1,4-diisocyanobenzene)]. J Am Chem Soc. 2008;130:10044–45.

  21. Lien C-Y, Hsu Y-F, Liu Y-H, Peng S-M, Shinmyozu T, Yang J-S. Steric engineering of cyclometalated Pt(II) complexes toward high-contrast monomer–excimer-based mechanochromic and vapochromic luminescence. Inorganic Chem. 2020;59:11584–94.

    Article  CAS  Google Scholar 

  22. Norton AE, Abdolmaleki MK, Liang J, Sharma M, Golsby R, Zoller A, et al. Phase transformation induced mechanochromism in a platinum salt: a tale of two polymorphs. Chem Commun. 2020;56:10175–78.

    Article  CAS  Google Scholar 

  23. Choi SJ, Kuwabara J, Nishimura Y, Arai T, Kanbara T. Two-step changes in luminescence color of Pt(II) complex bearing an amide moiety by mechano- and vapochromism. Chem Lett. 2011;41:65–67.

    Article  Google Scholar 

  24. Nishiuchi Y, Takayama A, Suzuki T, Shinozaki K. A polymorphic platinum(II) complex: yellow, red, and green polymorphs and X-ray crystallography of [Pt(fdpb)Cl] [Hfdpb = 1,3-bis(5-trifluoromethyl-2-pyridyl)benzene]. Eur J Inorg Chem. 2011;2011:1815–23.

  25. Abe T, Itakura T, Ikeda N, Shinozaki K. Luminescence color change of a platinum(II) complex solid upon mechanical grinding. Dalton Trans. 2009;28:711–15.

    Article  Google Scholar 

  26. Kang J, Zhang X, Zhou H, Gai X, Jia T, Xu L, et al. 1-D “Platinum Wire” stacking structure built of platinum(II) Diimine Bis(σ-acetylide) units with luminescence in the NIR region. Inorganic Chem. 2016;55:10208–17.

    Article  CAS  Google Scholar 

  27. Ni J, Wang Y-G, Wang H-H, Pan Y-Z, Xu L, Zhao Y-Q, et al. Reversible dual-stimulus-responsive luminescence and color switch of a platinum complex with 4-[(2-trimethylsilyl)ethynyl]-2,2′-bipyridine. Eur J Inorg Chem. 2014;2014:986–93.

    Article  CAS  Google Scholar 

  28. Zhang X, Wang J-Y, Ni J, Zhang L-Y, Chen Z-N. Vapochromic and mechanochromic phosphorescence materials based on a platinum(II) complex with 4-trifluoromethylphenylacetylideundefined. Inorganic Chem. 2012;51:5569–79.

    Article  CAS  Google Scholar 

  29. Ni J, Zhang X, Wu Y-H, Zhang L-Y, Chen Z-N. Vapor- and mechanical-grinding-triggered color and luminescence switches for Bis(σ-fluorophenylacetylide) platinum(II) complexes. Chem Eur J. 2011;17:1171–83.

    Article  CAS  PubMed  Google Scholar 

  30. Geng H, Luo K, Zou G, Wang H, Ni H, Yu W, et al. New phosphorescent platinum(II) complexes: lamellar mesophase and mechanochromism. New J Chem. 2016;40:10371–77.

    Article  CAS  Google Scholar 

  31. Ohno K, Yamaguchi S, Nagasawa A, Fujihara T. Mechanochromism in the luminescence of novel cyclometalated platinum(II) complexes with α-aminocarboxylates. Dalton Trans. 2016;45:5492–503.

    Article  CAS  PubMed  Google Scholar 

  32. Krikorian M, Liu S, Swager TM. Columnar liquid crystallinity and mechanochromism in cationic platinum(II) complexes. J Am Chem Soc. 2014;136:2952–55.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang D, Wu L-Z, Yang Q-Z, Li X-H, Zhang L-P, Tung C-H. Versatile photosensitization system for 1O2-mediated oxidation of alkenes based on nafion-supported platinum(II) terpyridyl acetylide complex. Organic Lett. 2003;5:3221–24.

    Article  CAS  Google Scholar 

  34. Li X-H, Wu LZ, Zhang LP, Tung C-H, Che C-M. Luminescence and photocatalytic properties of a platinum(II)–quaterpyridine complex incorporated in Nafion membrane. Chem Commun. 2001;7:2280–81.

    Article  Google Scholar 

  35. Liu N, Wang Y, Wang C, He Q, Bu W. Syntheses and controllable self-assembly of luminescence platinum(II) plane–coil diblock copolymers. Macromolecules. 2017;50:2825–37.

    Article  CAS  Google Scholar 

  36. Kumpfer JR, Taylor SD, Connick WB, Rowan SJ. Vapochromic and mechanochromic films from square-planar platinum complexes in polymethacrylates. J Mater Chem. 2012;22:14196–204.

    Article  CAS  Google Scholar 

  37. Aoki R, Horiuchi T, Makino S, Sano N, Imai Y, Sogawa H, et al. Chirality induction in platinum-containing polyaryleneethynylenes by exchange from achiral phosphine ligands to P-chiral phosphine ligands. Polymer. 2023;265:125576.

    Article  CAS  Google Scholar 

  38. Ishida T, Sotani T, Sano N, Sogawa H, Sanda F. Control of higher-order structures of platinum-containing conjugated polymers by ligand exchange reactions: chirality transfer from optically active ligands to optically inactive polymers. Macromolecules. 2022;55:309–21.

    Article  CAS  Google Scholar 

  39. Makino S, Horiuchi T, Ishida T, Sano N, Yajima T, Sogawa H, et al. Synthesis of platinum-containing conjugated polymers bearing chiral phosphine ligands. study of geometries and intermolecular interactions leading to aggregation. Organometallics. 2022;41:1699–709.

    Article  CAS  Google Scholar 

  40. Marumoto M, Sotani T, Miyagi Y, Yajima T, Sano N, Sanda F. Synthesis of platinum-containing conjugated polymers having QuinoxP* and bipyridine ligands. Chirality transfer from the phosphine ligand to the polymer backbone. Macromolecules. 2020;53:2031–38.

    Article  CAS  Google Scholar 

  41. Sotani T, Yajima T, Sogawa H, Sanda F. Synthesis of platinum-containing conjugated polymers bearing optically active amide groups: a mechanistic study of chiral aggregation. Macromolecules. 2020;53:11077–88.

    Article  CAS  Google Scholar 

  42. Miyagi Y, Ishida T, Marumoto M, Sano N, Yajima T, Sanda F. Ligand exchange reaction for controlling the conformation of platinum-containing polymers. Macromolecules. 2018;51:815–24.

    Article  CAS  Google Scholar 

  43. Miyagi Y, Sotani T, Yajima T, Sano N, Sanda F. Effect of phosphine ligand on the optical absorption/emission properties of platinum-containing conjugated polymers. Polym Chem. 2018;9:1772–79.

    Article  CAS  Google Scholar 

  44. Miyagi Y, Shibutani Y, Otaki Y, Sanda F. Synthesis of platinum-containing poly(phenyleneethynylene)s having various chromophores: aggregation and optical properties. Polym Chem. 2016;7:1070–78.

    Article  CAS  Google Scholar 

  45. Otaki Y, Marumoto M, Miyagi Y, Hirao T, Haino T, Sanda F. Synthesis and properties of novel optically active platinum-containing poly(phenyleneethynylene)s. Chem Lett. 2016;45:937–39.

    Article  CAS  Google Scholar 

  46. Miyagi Y, Hirao T, Haino T, Sanda F. Synthesis of optically active conjugated polymers containing platinum in the main chain: control of the higher-order structures by substituents and solvents. J Polym Sci Part A: Polym Chem. 2015;53:2452–61.

    Article  CAS  Google Scholar 

  47. Inoue Y, Ishida T, Sano N, Yajima T, Sogawa H, Sanda F. Platinum-mediated reversible cross-linking/decross-linking of polyacetylenes substituted with phosphine ligands: catalytic activity for hydrosilylation. Macromolecules. 2022;55:5711–22.

    Article  CAS  Google Scholar 

  48. Uchiyama S, Sotani T, Mizokuro T, Sogawa H, Wagener KB, Sanda F. End functionalization of polynorbornene with platinum–acetylide complexes utilizing a cross-metathesis reaction. Macromolecules. 2023;56:281–91.

    Article  CAS  Google Scholar 

  49. Sotani T, Mizokuro T, Yajima T, Sogawa H, Sanda F. Highly photoluminescent poly(norbornene)s carrying platinum–acetylide complex moieties in their side chains: evaluation of oxygen sensing and TTA–UC. Polym Chem. 2021;12:4829–37.

    Article  CAS  Google Scholar 

  50. Menon AV, Madras G, Bose S. The journey of self-healing and shape memory polyurethanes from bench to translational research. Polym Chem. 2019;10:4370–88.

    Article  CAS  Google Scholar 

  51. Delebecq E, Pascault J-P, Boutevin B, Ganachaud F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev. 2013;113:80–118.

    Article  CAS  PubMed  Google Scholar 

  52. Chattopadhyay DK, Raju KVSN. Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci. 2007;32:352–418.

    Article  CAS  Google Scholar 

  53. Osaka K, Matsumoto T, Taniguchi Y, Inoue D, Sato M, Sano N. High-throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8. AIP Conference Proceedings. 2016;1741:030003.

    Article  Google Scholar 

  54. Sawada J, Sogawa H, Marubayashi H, Nojima S, Otsuka H, Nakajima K, et al. Segmented polyurethanes containing movable rotaxane units on the main chain: Synthesis, structure, and mechanical properties. Polymer. 2020;193:122358.

    Article  CAS  Google Scholar 

  55. Frisch ME, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, et al. Gaussian 16. Gaussian, Inc. Wallingford, CT (2016).

  56. Su M-M, Kang J-J, Liu S-Q, Meng C-G, Li Y-Q, Zhang J-J, et al. Strategy for achieving long-wavelength near-infrared luminescence of diimineplatinum(II) complexes. Inorganic Chem. 2021;60:3773–80.

    Article  CAS  Google Scholar 

  57. Wong KM-C, Yam VW-W. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior. Acc Chem Res. 2011;44:424–34.

    Article  CAS  PubMed  Google Scholar 

  58. Pattanayak A, Jana SC. Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer. 2005;46:5183–93.

    Article  CAS  Google Scholar 

  59. Ning L, De-Ning W, Sheng-Kang Y. Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers. Polymer. 1996;37:3577–83.

    Article  CAS  Google Scholar 

  60. Kojio K, Nozaki S, Takahara A, Yamasaki S. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review. J Polym Res. 2020;27:140.

    Article  CAS  Google Scholar 

  61. Rahmawati R, Nozaki S, Kojio K, Takahara A, Shinohara N, Yamasaki S. Microphase-separated structure and mechanical properties of cycloaliphatic diisocyanate-based thiourethane elastomers. Polym J. 2019;51:265–73.

    Article  CAS  Google Scholar 

  62. Koberstein JT, Russell TP. Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules. 1986;19:714–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by JSPS KAKENHI (Grant Number JP21K05203), the Kansai University Fund for Supporting Young Scholars, 2021. The synchrotron radiation experiments were performed at beamline BL19B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal 2022B1752). This research used computational resources under the Collaborative Research Program for Young Women Scientists provided by the Academic Center for Computing and Media Studies, Kyoto University. The authors thank Prof. Takashi Miyata, Prof. Akifumi Kawamura and Ms. Chika Hajime (Kansai University) for use of the tensile testing machine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiromitsu Sogawa or Fumio Sanda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sogawa, H., Abe, M., Shintani, R. et al. Polyurethanes containing platinum in the main chain: synthesis, structure and mechanofluorochromism. Polym J 55, 1119–1128 (2023). https://doi.org/10.1038/s41428-023-00822-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00822-4

Search

Quick links