Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Aggregation states, thermal molecular motion and carrier properties in functional polymer thin films

Abstract

Functional polymers, such as semiconducting polymers and polyelectrolytes, play an essential role in polymeric devices due to their electronic properties. The performance of the devices depends on the properties of carriers within the molecules of functional polymers. Therefore, the carrier properties should be strongly influenced by the structures and physical properties of the films. In addition, an interfacial effect becomes more pronounced once the functional polymers are used in a thin-film state and integrated with other inorganic materials. How the chain packing and mobility affect the carrier properties in a thin film should be clarified to design more developed functional devises. In this focus review, the relationship among the aggregation states, the thermal molecular motion, and the carrier properties of the functional polymers and their interfacial effects are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Schwartz BJ. Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions. Annu Rev Phys Chem. 2003;54:141–72.

    CAS  Google Scholar 

  2. Marsh AV, Heeney M. Conjugated polymers based on selenophene building blocks. Polym J. 2023;55:375–85.

    CAS  Google Scholar 

  3. Wang B, Facchetti A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv Mater. 2019;31:1901408.

    Google Scholar 

  4. Lund A, Wu Y, Fenech-Salerno B, Torrisi F, Carmichael TB, Müller C. Conducting materials as building blocks for electronic textiles. MRS Bull. 2021;46:491–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Weber AZ, Borup RL, Darling RM, Das PK, Dursch TJ, Gu WB, et al. A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J Electrochem Soc. 2014;161:F1254–F99.

    Google Scholar 

  6. Du M, Yang L, Luo X, Wang K, Chang G. Novel phosphoric acid (PA)-poly(ether ketone sulfone) with flexible benzotriazole side chains for high-temperature proton exchange membranes. Polym J. 2019;51:69–75.

    CAS  Google Scholar 

  7. Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metal composites. J Appl Phys. 2002;92:2899–915.

    CAS  Google Scholar 

  8. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, et al. Use of ionic liquids for π-conjugated polymer electrochemical devices. Science. 2002;297:983–87.

    CAS  PubMed  Google Scholar 

  9. Saito I, Shimada D, Aikawa M, Miyazaki T, Shimokita K, Takagi H, et al. Orientation and relaxation behaviors of lamellar microdomains of poly(methyl methacrylate)-b-poly(n-butyl acrylate) thin films as revealed by grazing-incidence small-angle X-ray scattering. Polym J. 2016;48:399–406.

    CAS  Google Scholar 

  10. Ogawa H, Takenaka M, Miyazaki T. Molecular weight effect on the transition processes of a symmetric PS-b-P2VP during spin-coating. Macromolecules. 2021;54:1017–29.

    CAS  Google Scholar 

  11. Nagano S. Surface and interface designs in side-chain liquid crystalline polymer systems for photoalignment. Polym J. 2018;50:1107–19.

    CAS  Google Scholar 

  12. Yamamoto K, Kawaguchi D, Sasahara K, Inutsuka M, Yamamoto S, Uchida K, et al. Aggregation states of poly(4-methylpentene-1) at a solid interface. Polym J. 2019;51:247–55.

    CAS  Google Scholar 

  13. Itagaki N, Kawaguchi D, Oda Y, Nemoto F, Yamada NL, Yamaguchi T, et al. Surface effect on frictional properties for thin hydrogel films of poly(vinyl ether). Macromolecules. 2019;52:9632–38.

    CAS  Google Scholar 

  14. Aoki H, Liu Y, Yamashita T. Deep learning approach for an interface structure analysis with a large statistical noise in neutron reflectometry. Sci Rep. 2021;11:22711.

    CAS  PubMed Central  Google Scholar 

  15. Yamaguchi K, Kawaguchi D, Miyata N, Miyazaki T, Aoki H, Yamamoto S, et al. Kinetics of the interfacial curing reaction for an epoxy–amine mixture. Phys Chem Chem Phys. 2022;24:21578–82.

    CAS  Google Scholar 

  16. Kawaguchi D, Nakayama R, Koga H, Totani M, Tanaka K. Improvement of polymer adhesion by designing the interface layer. Polymer. 2023;265:125581.

    CAS  Google Scholar 

  17. Nguyen HK, Inutsuka M, Kawaguchi D, Tanaka K. Direct observation of conformational relaxation of polymer chains at surfaces. ACS Macro Lett. 2018;7:1198–202.

    CAS  PubMed  Google Scholar 

  18. Kawaguchi D, Yamamoto K, Abe T, Jiang N, Koga T, Yamamoto S, et al. Local orientation of chains at crystal/amorphous interfaces buried in isotactic polypropylene thin films. Phys Chem Chem Phys. 2021;23:23466–72.

    CAS  PubMed  Google Scholar 

  19. Abe T, Shimada H, Hoshino T, Kawaguchi D, Tanaka K. Sum frequency generation imaging for semi-crystalline polymers. Polym J. 2022;54:679–85.

    CAS  Google Scholar 

  20. Harada R, Kawaguchi D, Yamamoto S, Tanaka K. Change in local conformation of polymer chains at film surface attached to solid surface. Soft Matter. 2022;18:3304–07.

    CAS  PubMed  Google Scholar 

  21. Liu Y, Shigemoto Y, Hanada T, Miyamae T, Kawasaki K, Horiuchi S. Role of chemical functionality in the adhesion of aluminum and isotactic polypropylene. ACS Appl Mater Interfaces. 2021;13:11497–506.

    CAS  PubMed  Google Scholar 

  22. Miyata T, Kawagoe Y, Okabe T, Jinnai H. Morphologies of polymer chains adsorbed on inorganic nanoparticles in a polymer composite as revealed by atomic-resolution electron microscopy. Polym J. 2022;54:1297–306.

    CAS  Google Scholar 

  23. Oda Y, Kawaguchi D, Morimitsu Y, Yamamoto S, Tanaka K. Direct observation of morphological transition for an adsorbed single polymer chain. Sci Rep. 2020;10:20914.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanaka K, Takahara A, Kajiyama T. Rheological analysis of surface relaxation process of monodisperse polystyrene films. Macromolecules. 2000;33:7588–93.

    CAS  Google Scholar 

  25. Morimitsu Y, Matsuno H, Oda Y, Yamamoto S, Tanaka K. Direct visualization of cooperative adsorption of a string-like molecule onto a solid. Sci Adv. 2022;8:eabn6349.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen HK, Shundo A, Liang X, Yamamoto S, Tanaka K, Nakajima K. Unraveling nanoscale elastic and adhesive properties at the nanoparticle/epoxy interface using bimodal atomic force microscopy. ACS Appl Mater Interfaces. 2022;14:42713–22.

    CAS  Google Scholar 

  27. Tanaka K, Tsuchimura Y, Akabori K, Ito F, Nagamura T. Time- and space-resolved fluorescence study on interfacial mobility of polymers. Appl Phys Lett. 2006;89:061916.

    Google Scholar 

  28. Inoue R, Nakamura M, Matsui K, Kanaya T, Nishida K, Hino M. Distribution of glass transition temperature in multilayered poly(methyl methacrylate) thin film supported on a si substrate as studied by neutron reflectivity. Phys Rev E. 2013;88:032601.

    Google Scholar 

  29. Tanaka K, Tateishi Y, Okada Y, Nagamura T, Doi M, Morita H. Interfacial mobility of polymers on inorganic solids. J Phys Chem B. 2009;113:4571–77.

    CAS  PubMed  Google Scholar 

  30. Nguyen HK, Sugimoto S, Konomi A, Inutsuka M, Kawaguchi D, Tanaka K. Dynamics gradient of polymer chains near a solid interface. ACS Macro Lett. 2019;8:1006–11.

    CAS  PubMed  Google Scholar 

  31. Chen SA, Ni JM. Structure/properties of conjugated conductive polymers. 1. Neutral poly(3-alkythiophene)s Macromolecules. 1992;25:6081–89.

    CAS  Google Scholar 

  32. McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M. Self-orienting head-to-tail poly(3-alkylthiophenes): New insights on structure-property relationships in conducting polymers. J Am Chem Soc. 1993;115:4910–11.

    CAS  Google Scholar 

  33. Coakley KM, McGehee MD. Conjugated polymer photovoltaic cells. Chem Mater. 2004;16:4533–42.

    CAS  Google Scholar 

  34. Shen J, Kashimoto M, Matsumoto T, Mori A, Nishino T. Structural deformation of elastic polythiophene with disiloxane moieties under stretching. Polym J. 2020;52:1273–78.

    Google Scholar 

  35. Liu R, Yang W, Xu W, Deng J, Ding C, Guo Y, et al. Impact of chemical design on the molecular orientation of conjugated donor–acceptor polymers for field-effect transistors. ACS Appl Polym Mater. 2022;4:2233–50.

    CAS  Google Scholar 

  36. Chen SA, Liao CS. Conductivity relaxation and chain motions in conjugated conducting polymers: Neutral poly(3-alkylthiophenes). Macromolecules. 1993;26:2810–16.

    CAS  Google Scholar 

  37. Diaz Calleja R, Matveeva ES, Parkhutik VP. Electric relaxation in chemically synthesized polyaniline: Study using electric modulus formalism. J Non-Cryst Solids. 1995;180:260–65.

    CAS  Google Scholar 

  38. Guo J, Ohkita H, Benten H, Ito S. Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities. J Am Chem Soc. 2009;131:16869–80.

    CAS  PubMed  Google Scholar 

  39. Ogata Y, Kawaguchi D, Tanaka K. An effect of molecular motion on carrier formation in a poly(3-hexylthiophene) film. Sci Rep. 2015;5:8436.

    PubMed Central  Google Scholar 

  40. Arkhipov VI, Emelianova EV, Bässler H. Hot exciton dissociation in a conjugated polymer. Phys Rev Lett. 1999;82:1321–24.

    CAS  Google Scholar 

  41. Guo J, Ohkita H, Benten H, Ito S. Charge generation and recombination dynamics in poly(3-hexylthiophene)/fullerene blend films with different regioregularities and morphologies. J Am Chem Soc. 2010;132:6154–64.

    CAS  PubMed  Google Scholar 

  42. Yu W, Donohoo-Vallett PJ, Zhou J, Bragg AE. Ultrafast photo-induced nuclear relaxation of a conformationally disordered conjugated polymer probed with transient absorption and femtosecond stimulated Raman spectroscopies. J Chem Phys. 2014;141:044201.

    Google Scholar 

  43. Lee D, Lee J, Song K-H, Rhee H, Jang D-J. Formation and decay of charge carriers in aggregate nanofibers consisting of poly(3-hexylthiophene)-coated gold nanoparticles. Phys Chem Chem Phys. 2016;18:2087–96.

    CAS  Google Scholar 

  44. Rana A, Gupta N, Lochan A, Sharma GD, Chand S, Kumar M, et al. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell. J Appl Phys. 2016;120:063102.

    Google Scholar 

  45. Lee D, Sin DH, Kim SW, Lee H, Byun HR, Mun J, et al. Singlet exciton delocalization in gold nanoparticle-tethered poly(3-hexylthiophene) nanofibers with enhanced intrachain ordering. Macromolecules. 2017;50:8487–96.

    CAS  Google Scholar 

  46. Mensik M, Pfleger J, Toman P. Dynamics of photogenerated polarons and polaron pairs in P3HT thin films. Chem Phys Lett. 2017;677:87–91.

    CAS  Google Scholar 

  47. Rais D, Mensik M, Paruzel B, Toman P, Pfleger J. Concept of the time-dependent diffusion coefficient of polarons in organic semiconductors and its determination from time-resolved spectroscopy. J Phys Chem C. 2018;122:22876–83.

    CAS  Google Scholar 

  48. Rana D, Donfack P, Jovanov V, Wagner V, Materny A. Ultrafast polaron-pair dynamics in a poly(3-hexylthiophene-2,5-diyl) device influenced by a static electric field: Insights into electric-field-related charge loss. Phys Chem Chem Phys. 2019;21:21236–48.

    CAS  PubMed  Google Scholar 

  49. Kawaguchi D, Higasayama A, Ogata Y, Kabe T, Matsushita Y, Tanaka K. Crystalline structure, molecular motion and photocarrier formation in thin films of monodisperse poly(3-hexylthiophene) with various molecular weights. Polym J. 2023;55:497–505.

    CAS  Google Scholar 

  50. Lindenmeyer PH, Hosemann R. Application of the theory of paracrystals to the crystal structure analysis of polyacrylonitrile. J Appl Phys. 1963;34:42–45.

    CAS  Google Scholar 

  51. Hosemann R, Hindeleh AM. Structure of crystalline and paracrystalline condensed matter. J Macromol Sci Part B. 1995;34:327–56.

    Google Scholar 

  52. Pankaj S, Beiner M. Long-term behavior and side chain crystallization of poly(3-alkyl thiophenes). Soft Matter. 2010;6:3506–16.

    CAS  Google Scholar 

  53. Xie R, Lee Y, Aplan MP, Caggiano NJ, Müller C, Colby RH, et al. Glass transition temperature of conjugated polymers by oscillatory shear rheometry. Macromolecules. 2017;50:5146–54.

    CAS  Google Scholar 

  54. Cao Z, Galuska L, Qian Z, Zhang S, Huang L, Prine N, et al. The effect of side-chain branch position on the thermal properties of poly(3-alkylthiophenes). Polym Chem. 2020;11:517–26.

    CAS  Google Scholar 

  55. Yazawa K, Inoue Y, Yamamoto T, Asakawa N. Twist glass transition in regioregulated poly(3-alkylthiophene). Phys Rev B. 2006;74:094204.

    Google Scholar 

  56. Hu X, Xu L. Structure and properties of 3-alkoxy substituted polythiophene synthesized at low temperature. Polymer. 2000;41:9147–54.

    CAS  Google Scholar 

  57. Zhan P, Zhang W, Jacobs IE, Nisson DM, Xie R, Weissen AR, et al. Side chain length affects backbone dynamics in poly(3-alkylthiophene)s. J Polym Sci, Part B: Polym Phys. 2018;56:1193–202.

    CAS  Google Scholar 

  58. Pankaj S, Hempel E, Beiner M. Side-chain dynamics and crystallization in a series of regiorandom poly(3-alkylthiophenes). Macromolecules. 2009;42:716–24.

    CAS  Google Scholar 

  59. Ogata Y, Kawaguchi D, Tanaka K. The impact of polymer dynamics on photoinduced carrier formation in films of semiconducting polymers. J Phys Chem Lett. 2015;6:4794–98.

    CAS  Google Scholar 

  60. Kim S, Hong K-P, Saeed MA, Kim TH, Ahn H, Lee W, et al. Outer sidechain engineering of selenophene and thiophene-based y-series acceptors to produce efficient indoor organic solar cells. Appl Surf Sci. 2023;623:157140.

    CAS  Google Scholar 

  61. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature. 1999;401:685–88.

    CAS  Google Scholar 

  62. Bässler H. Charge transport in disordered organic photoconductors a monte carlo simulation study. Phys Status Solidi B. 1993;175:15–56.

    Google Scholar 

  63. Abe T, Kawaguchi D, Watanabe M, Hoshino T, Ishihara T, Tanaka K. An effect of crystallographic distortion on carrier mobility in poly(3-hexylthiophene) thin films. Appl Phys Lett. 2021;118:181601.

  64. Kawamoto N, Mori H, Yui N, Nitta K-H, Terano M. Effects of surface crystallinity on dynamic mechanical properties of compression-molded polypropene sheets. Angew Makromol Chem. 1996;243:87–98.

    CAS  Google Scholar 

  65. Nishino T, Matsumoto T, Nakamae K. Surface structure of isotactic polypropylene by X-ray diffraction. Polym Eng Sci. 2000;40:336–43.

    CAS  Google Scholar 

  66. Yakabe H, Sasaki S, Sakata O, Takahara A, Kajiyama T. Paracrystalline lattice distortion in the near-surface region of melt-crystallized polyethylene films evaluated by synchrotron-sourced grazing-incidence X-ray diffraction. Macromolecules. 2003;36:5905–07.

    CAS  Google Scholar 

  67. Yakabe H, Tanaka K, Nagamura T, Sasaki S, Sakata O, Takahara A, et al. Grazing incidence X-ray diffraction study on surface crystal structure of polyethylene thin films. Polym Bull. 2005;53:213–22.

    CAS  Google Scholar 

  68. Sakai A, Tanaka K, Fujii Y, Nagamura T, Kajiyama T. Structure and thermal molecular motion at surface of semi-crystalline isotactic polypropylene films. Polymer. 2005;46:429–37.

    CAS  Google Scholar 

  69. Tanaka K, Kawaguchi D, Yokoe Y, Kajiyama T, Takahara A, Tasaki S. Surface segregation of chain ends in alpha,omega-fluoroalkyl-terminated polystyrenes films. Polymer. 2003;44:4171–77.

    CAS  Google Scholar 

  70. Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature. 2001;414:345–52.

    CAS  Google Scholar 

  71. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev. 2007;107:3904–51.

    CAS  Google Scholar 

  72. Ogata Y, Kawaguchi D, Yamada NL, Tanaka K. Multistep thickening of Nafion thin films in water. ACS Macro Lett. 2013;2:856–59.

    CAS  PubMed  Google Scholar 

  73. Yoshida H, Miura Y. Behavior of water in perfluorinated ionomer membranes containing various monovalent cations. J Membr Sci. 1992;68:1–10.

    CAS  Google Scholar 

  74. Hinatsu JT, Mizuhata M, Takenaka H. Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor. J Electrochem Soc. 1994;141:1493.

    CAS  Google Scholar 

  75. Gebel G, Lambard J. Small-angle scattering study of water-swollen perfluorinated ionomer membranes. Macromolecules. 1997;30:7914–20.

    CAS  Google Scholar 

  76. Schmidt-Rohr K, Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater. 2008;7:75–83.

    CAS  PubMed  Google Scholar 

  77. Ogata Y, Abe T, Yonemori S, Yamada NL, Kawaguchi D, Tanaka K. Impact of the solid interface on proton conductivity in Nafion thin films. Langmuir. 2018;34:15483–89.

    CAS  PubMed  Google Scholar 

  78. Dura JA, Murthi VS, Hartman M, Satija SK, Majkrzak CF. Multilamellar interface structures in Nafion. Macromolecules. 2009;42:4769–74.

    CAS  Google Scholar 

  79. Park MJ, Balsara NP. Anisotropic proton conduction in aligned block copolymer electrolyte membranes at equilibrium with humid air. Macromolecules. 2010;43:292–98.

    CAS  Google Scholar 

  80. Sato T, Hayasaka Y, Mitsuishi M, Miyashita T, Nagano S, Matsui J. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film. Langmuir. 2015;31:5174–80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Professor Keiji Tanaka of Kyushu University for his encouragement and consideration of this study. I also thank Prof. Norifumi L. Yamada at High Energy Accelerator Research Organization, Dr. Taizo Kabe at Japan Synchrotron Radiation Research Institute (currently at the University of Tokyo), Dr. Taiki Hoshino at RIKEN (currently at Tohoku University), Prof. Motonori Watanabe and Prof. Tatsumi Ishihara at Kyushu University, Dr. Yudai Ogata, Dr. Tatsuki Abe, Mr. Shigeki Yonemori, Ms. Ayano Higasayama, and other staff and students in Tanaka laboratory at Kyushu University. This work was partly supported by JSPS KAKENHI for Scientific Research (B) (No. JP20H02802) to DK from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. GIWAXD measurements were carried out at BL03XU at SPring-8 constructed by the Consortium of the Advanced Softmaterial Beamline (FSBL) and at BL05XU, and at BL15 at SAGA Light Source. NR measurements were carried out at SOFIA at J-PARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kawaguchi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, D. Aggregation states, thermal molecular motion and carrier properties in functional polymer thin films. Polym J 55, 1237–1245 (2023). https://doi.org/10.1038/s41428-023-00820-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00820-6

Search

Quick links