Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Rapid Communication
  • Published:

Synthesis and properties of multiblock amphiphilic cyclophanes with chiral aromatic units

Abstract

We designed multiblock amphiphilic cyclophanes (CSS, CRR and CSR) that possess twisted aromatic units with axial chirality. Electronic absorption and emission spectroscopy revealed that these cyclophanes are molecularly dispersed in organic solvents, while they form aggregates in aqueous environments. We also found that under aqueous conditions, the chiral aromatic units within cyclophanes CSS and CRR adopt a more planar conformation compared to their diastereomer CSR, demonstrating the possibility of stereoselective recognition. Furthermore, by comparing the corresponding multiblock amphiphiles that are linear and chiral, we found that the macrocyclic structure might be essential for recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3

References

  1. Blackmond DG. The origin of biological homochirality. Cold Spring Harb Perspect Biol. 2019;11:a032540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kida T, Iwamoto T, Asahara H, Hinoue T, Akashi M. Chiral recognition and kinetic resolution of aromatic amines via supramolecular chiral nanocapsules in nonpolar solvents. J Am Chem Soc. 2013;135:3371–4.

    Article  CAS  PubMed  Google Scholar 

  3. Feng X, Shen B, Sun B, Kim J, Liu X, Lee M. Single-layered chiral nanosheets with dual chiral void spaces for highly efficient enantiomer absorption. Angew Chem Int Ed. 2020;59:1–6.

    Article  Google Scholar 

  4. Ishida Y, Aida T. Homochiral supramolecular polymerization of an “S”-shaped chiral monomer: translation of optical purity into molecular weight distribution. J Am Chem Soc. 2002;124:14017–9.

    Article  CAS  PubMed  Google Scholar 

  5. Sato K, Itoh Y, Aida T. Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution. Chem Sci. 2014;5:136–40.

    Article  CAS  Google Scholar 

  6. Narayan B, Bejagam KK, Balasubramanian S, George SJ. Autoresolution of segregated and mixed p-n stacks by stereoselective supramolecular polymerization in solution. Angew Chem Int Ed. 2015;127:13245–9.

    Article  Google Scholar 

  7. Kang J, Miyajima D, Mori T, Inoue Y, Itoh Y, Aida T. A rational strategy for the realization of chain-growth supramolecular polymerization. Science. 2015;347:646–51.

    Article  CAS  PubMed  Google Scholar 

  8. Saito T, Kajitani T, Yagai S. Amplification of molecular asymmetry during the hierarchical self-assembly of foldable azobenzene dyads into nanotoroids and nanotubes. J Am Chem Soc. 2023;145:443–54.

    Article  CAS  PubMed  Google Scholar 

  9. Nishioka Y, Yamaguchi T, Kawano M, Fujita M. Asymmetric [2 + 2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries. J Am Chem Soc. 2008;130:8160–1.

    Article  CAS  PubMed  Google Scholar 

  10. Bierschenk SM, Pan JY, Settineri NS, Warzok U, Bergman RG, Raymond KN, et al. Impact of host flexibility on selectivity in a supramolecular host-catalyzed enantioselective aza-darzens reaction. J Am Chem Soc. 2022;144:11425–33.

    Article  CAS  PubMed  Google Scholar 

  11. Oshovsky GV, Reinhoudt DN, Verboom W. Supramolecular chemistry in water. Angew Chem Int Ed. 2007;46:2366–93.

    Article  CAS  Google Scholar 

  12. Muraoka T, Shima T, Hamada T, Morita M, Takagi M, Kinbara K. Mimicking multipass transmembrane proteins: Synthesis, assembly and folding of alternating amphiphilic multiblock molecules in liposomal membranes. Chem Commun. 2011;47:194–6.

    Article  CAS  Google Scholar 

  13. Muraoka T, Noguchi D, Kasai RS, Sato K, Sasaki R, Tabata KV, et al. A synthetic ion channel with anisotropic ligand response. Nat Commun. 2020;11:2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sato K, Sasaki R, Matsuda R, Nakagawa M, Ekimoto T, Yamane T, et al. Supramolecular mechanosensitive potassium channel formed by fluorinated amphiphilic cyclophane. J Am Chem Soc. 2022;144:11802–9.

    Article  CAS  PubMed  Google Scholar 

  15. Safont-Sempere MM, Osswald P, Stolte M, Grüne M, Renz M, Kaupp M, et al. Impact of molecular flexibility on binding strength and self-sorting of chiral π-surfaces. J Am Chem Soc. 2011;133:9580–91.

    Article  CAS  PubMed  Google Scholar 

  16. Weh M, Shoyama K, Würthner F. Preferential molecular recognition of heterochiral guests within a cyclophane receptor. Nat Commun. 2023;14:243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levitus M, Schmieder K, Ricks H, Shimizu KD, Bunz UHF, Garcia-Garibay MA. Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s. 1. Rotationally interrupted conjugation in the excited states of 1,4-Bis(phenylethynyl)benzene. J Am Chem Soc. 2001;123:4259–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Engine” (18H05418 and 18H05419 to KK), Grant-in-Aid for Early-Career Scientists (21K14670 to KS), and Grant-in-Aid for Transformative Research Areas “Molecular Cybernetics” (21H05872 to KS). KS also thanks The Foundation for The Promotion of Ion Engineering and The Office of Research Innovation, Tokyo Institute of Technology for their financial support. We also thank Suzukakedai Materials Analysis Division, Open Facility Center, Tokyo Institute of Technology for ESI-TOF-MS spectrometry, and Open Research Facilities for Life Science and Technology, Tokyo Institute of Technology for NMR and CD spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kohei Sato or Kazushi Kinbara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, R., Otake, H., Sato, K. et al. Synthesis and properties of multiblock amphiphilic cyclophanes with chiral aromatic units. Polym J 55, 1225–1229 (2023). https://doi.org/10.1038/s41428-023-00812-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00812-6

Search

Quick links