Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Note
  • Published:

Hierarchical supramolecular structure comprising reduction-responsive DNA microspheres and semi-artificial glycopeptide-based micro-asters

Abstract

Herein, we describe the construction of a hierarchical supramolecular structure comprising reduction-responsive DNA microspheres and semi-artificial glycopeptide-based micro-asters, which are obtained from the (self-)assembled structures of oligonucleotides and a semi-artificial glycopeptide in a single thermal annealing process under aqueous conditions in the presence of Mg2+.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Nepal D, Kang S, Adstedt KM, Kanhaiya K, Bockstaller MR, Brinson LC, et al. Hierarchically structured bioinspired nanocomposites. Nat Mater. 2023;22:18–35.

    Article  CAS  PubMed  Google Scholar 

  2. Schnitzer T, Vantomme G. Synthesis of complex molecular systems—the foreseen role of organic chemists. ACS Cent Sci. 2020;6:2060–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shigemitsu H, Hamachi I. Design strategies of stimuli-responsive supramolecular hydrogels relying on structural analyses and cell-mimicking approaches. Acc Chem Res. 2017;50:740–50.

    Article  CAS  PubMed  Google Scholar 

  4. Narang N, Sato T. Liquid-liquid phase separation and self-assembly of a lysine derivative Fmoc-L-lysine in water-DMSO mixtures. Polym J. 2021;53:1413–24.

    Article  CAS  Google Scholar 

  5. Matsuura K. Dressing up artificial viral capsids self-assembled from C-terminal-modified β-annulus peptides. Polym J. 2020;52:1035–41.

    Article  CAS  Google Scholar 

  6. Zhu H, Gu D, Rao Z, Li Y, Hao J. Design of gel-to-sol UCST transition peptides by controlling polypeptide β-sheet nanostructures. Polym J. 2021;53:943–9.

    Article  CAS  Google Scholar 

  7. Komuro N, Nakajima N, Hamada M, Koyama Y. Design and synthesis of amphiphilic alternating peptides with lower critical solution temperature behaviors. Polym J. 2022;54:903–12.

    Article  CAS  Google Scholar 

  8. Seeman NC. Nucleic acid junctions and lattices. J Theor Biol. 1982;99:237–47.

    Article  CAS  PubMed  Google Scholar 

  9. Komiyama M, Shigi N, Ariga K. DNA-based nanoarchitectures as eminent vehicles for smart drug delivery systems. Adv Funct Mater. 2022;32:2200924.

    Article  CAS  Google Scholar 

  10. Shibata A, Higashi SL, Ikeda M. Nucleic acid-based fluorescent sensor systems: a review. Polym J. 2022;54:751–66.

    Article  CAS  Google Scholar 

  11. Higashi SL, Shibata A, Kitamura Y, Hirosawa KM, Suzuki KGN, Matsuura K, et al. Hybrid soft nanomaterials composed of DNA microspheres and supramolecular nanostructures of semi-artificial glycopeptides. Chem Eur J. 2019;25:11955–62.

    Article  CAS  PubMed  Google Scholar 

  12. Matsuura K, Yamashita T, Igami Y, Kimizuka N ‘Nucleo-nanocages’: designed ternary oligodeoxyribonucleotides spontaneously form nanosized DNA cages. Chem Commun. 2003;376–7.

  13. Matsuura K, Masumoto K, Igami Y, Fujioka T, Kimizuka N. In situ observation of spherical DNA assembly in water and the controlled release of bound dyes. Biomacromolecules. 2007;8:2726–32.

    Article  CAS  PubMed  Google Scholar 

  14. Tsuzuki T, Kabumoto M, Arakawa H, Ikeda M. The effect of carbohydrate structures on the hydrogelation ability and morphology of self-assembled structures of peptide–carbohydrate conjugates in water. Org Biomol Chem. 2017;15:4595–600.

    Article  CAS  PubMed  Google Scholar 

  15. Higashi SL, Isogami A, Takahashi J, Shibata A, Hirosawa KM, Suzuki KGN, et al. Construction of a reduction-responsive DNA microsphere using a reduction-cleavable spacer based on a nitrobenzene scaffold. Chem Asian J. 2022;17:e202200142.

    Article  CAS  PubMed  Google Scholar 

  16. Tajmir-Riahi HA. Interaction of D-glucose with alkaline-earth metal ions. Synthesis, spectroscopic, and structural characterization of Mg(II)- and Ca(II)-D-glucose adducts and the effect of metal-ion binding on anomeric configuration of the sugar. Carbohydr Res. 1988;183:35–46.

    Article  CAS  PubMed  Google Scholar 

  17. Oku K, Kurose M, Kubota M, Fukuda S, Kurimoto M, Tujisaka Y, et al. Interaction between trehalose and alkaline-earth metal ions. Biosci Biotechnol Biochem. 2005;69:7–12.

    Article  CAS  PubMed  Google Scholar 

  18. Chen Q, Cui Y, Zhang TL, Cao J, Han BH. Fluorescent conjugated polyfluorene with pendant lactopyranosyl ligands for studies of Ca2+-mediated carbohydrate–carbohydrate interaction. Biomacromolecules. 2010;11:13–9.

    Article  PubMed  Google Scholar 

  19. Higashi SL, Shintani Y, Ikeda M. Installing reduction responsiveness into biomolecules by introducing nitroaryl groups. Chem Eur J. 2022;28:e202201103.

    Article  CAS  PubMed  Google Scholar 

  20. Nitta T, Wang Y, Du Z, Morishima K, Hiratsuka Y. A printable active network actuator built from an engineered biomolecular motor. Nat Mater. 2021;20:1149–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by financial support from the JSPS Core-to-Core Program, iGCORE collaboration grant, Gifu University Drug Discovery Collaborative Research 2022, Grant-in-Aid for Scientific Research (C) of the Japan Society for the Promotion of Science (20K05563, AS), and JSPS Research Fellowship for Young Scientists (SLH). Additionally, we acknowledge the Life Science Research Center, Gifu University, for their kind and continuous support. Finally, the authors thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Ikeda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isogami, A., Higashi, S.L., Okumura, B. et al. Hierarchical supramolecular structure comprising reduction-responsive DNA microspheres and semi-artificial glycopeptide-based micro-asters. Polym J 55, 1103–1107 (2023). https://doi.org/10.1038/s41428-023-00809-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00809-1

Search

Quick links