Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of thermoresponsive polymer gels with crosslinked domains containing iridium complexes for ammonia sensing and N-alkylation catalysis

Abstract

Incorporating organometallic complexes into nanodomains in polymer networks would broaden the scopes of gel material design and applicability. In this study, we designed polymer gels containing an iridium complex in the crosslinked domain (CD) of their compartmentalized nanodomain structures and demonstrated their molecular sensing ability and catalytic activity levels. Novel Ir-containing vinyl monomers were first synthesized and then incorporated into a thermoresponsive CD structure by reversible addition–fragmentation chain-transfer polymerization using a hydrophilic bifunctional macro-chain transfer agent with N-isopropylacrylamide and a crosslinker. A model reaction and structural analysis revealed that the product gel exhibited a homogeneously dispersed CD structure containing an Ir complex. The Ir-containing gel immediately changed color by sensing ammonia in a thermoresponsive manner and catalyzed the N-alkylation reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Osada Y, Gong J. Stimuli-responsive polymer gels and their application to chemomechanical systems. Prog Polym Sci. 1993;18:187–226.

    Article  CAS  Google Scholar 

  2. Hoffman AS. “intelligent” polymers in medicine and biotechnology. Macromol Symp. 1995;98:645–64.

    Article  CAS  Google Scholar 

  3. Kikuchi A, Okano T. Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev. 2002;54:53–77.

    Article  CAS  PubMed  Google Scholar 

  4. Eddington DT, Beebe DJ. Flow control with hydrogels. Adv Drug Deliv Rev. 2004;56:199–210.

    Article  CAS  PubMed  Google Scholar 

  5. Chaterji S, Kwon IK, Park K. Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci. 2007;32:1083–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai S, Ravi P, Tam KC. Thermo- and photo-responsive polymeric systems. Soft Matter. 2009;5:2513–33.

    CAS  Google Scholar 

  7. Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–67.

    Article  Google Scholar 

  8. Mahinroosta M, Jomeh Farsangi Z, Allahverdi A, Shakoori Z. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater Today Chem. 2018;8:42–55.

    Article  CAS  Google Scholar 

  9. Chen J, Peng Q, Peng X, Han L, Wang X, Wang J, et al. Recent advances in mechano-responsive hydrogels for biomedical applications. ACS Appl Polym Mater. 2020;2:1092–107.

    Article  CAS  Google Scholar 

  10. Lin X, Wang X, Zeng L, Wu ZL, Guo H, Hourdet D. Stimuli-responsive toughening of hydrogels. Chem Mater. 2021;33:7633–56.

    Article  CAS  Google Scholar 

  11. Means AK, Grunlan MA. Modern strategies to achieve tissue-mimetic, mechanically robust hydrogels. ACS Macro Lett. 2019;8:705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan H, Gong JP. Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules 2020;53:2769–82.

    Article  CAS  Google Scholar 

  13. Rivera-Tarazona LK, Campbell ZT, Ware TH. Stimuli-responsive engineered living materials. Soft Matter. 2021;17:785–809.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft materials by design: unconventional polymer networks give extreme properties. Chem Rev. 2021;121:4309–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidt BVKJ. Multicompartment hydrogels. Macromol Rapid Commun. 2022;43:2100895.

    Article  CAS  Google Scholar 

  16. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. Self-oscillating gel. J Am Chem Soc. 1996;118:5134–5.

    Article  CAS  Google Scholar 

  17. Kim YS, Tamate R, Akimoto AM, Yoshida R. Recent developments in self-oscillating polymeric systems as smart materials: from polymers to bulk hydrogels. Mater Horiz. 2017;4:38–54.

    Article  CAS  Google Scholar 

  18. Yoshida R. Creation of softmaterials based on self-oscillating polymer gels. Polym J. 2022;54:827–49.

    Article  CAS  Google Scholar 

  19. Zhukhovitskiy AV, Zhong M, Keeler EG, Michaelis VK, Sun JEP, Hore MJA, et al. Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers. Nat Chem. 2016;8:33–41.

    Article  CAS  PubMed  Google Scholar 

  20. Ikegami S, Hamamoto H. Novel recycling system for organic synthesis via designer polymer-gel catalysts. Chem Rev. 2009;109:583–93.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Liu H, Cui H, Zhang M, Zhang Z. A cross-linked and swelling polymer as an effective solid acid catalyst. Ind Eng Chem Res. 2015;54:7219–25.

    Article  CAS  Google Scholar 

  22. Seto H, Matsumoto H, Miura Y. Preparation of palladium-loaded polymer hydrogel catalysts with high durability and recyclability. Polym J. 2020;52:671–9.

    Article  CAS  Google Scholar 

  23. Brown CM, Lundberg DJ, Lamb JR, Kevlishvili I, Kleinschmidt D, Alfaraj YS, et al. Endohedrally functionalized metal–organic cage-cross-linked polymer gels as modular heterogeneous catalysts. J Am Chem Soc. 2022;144:13276–84.

    Article  CAS  PubMed  Google Scholar 

  24. Chen M, Deng S, Gu Y, Lin J, MacLeod MJ, Johnson JA. Logic-controlled radical polymerization with heat and light: multiple-stimuli switching of polymer chain growth via a recyclable, thermally responsive gel photoredox catalyst. J Am Chem Soc. 2017;139:2257–66.

    Article  CAS  PubMed  Google Scholar 

  25. Jeong J, Fujita K-I. Selective synthesis of bisdimethylamine derivatives from diols and an aqueous solution of dimethylamine through iridium-catalyzed borrowing hydrogen pathway. ChemCatChem 2022;14:e202101499.

    Article  CAS  Google Scholar 

  26. Tanaka T, Enomoto A, Furukawa S, Fujita K-I. Synthesis of 2-methylquinoxaline derivatives from glycerol and diamines catalyzed by iridium complexes bearing an N-heterocyclic carbene ligand. Catalysts 2021;11:1200.

    Article  CAS  Google Scholar 

  27. Jeong J, Fujita K-I. Dimethylamination of primary alcohols using a homogeneous iridium catalyst: a synthetic method for N,N-dimethylamine derivatives. J Org Chem. 2021;86:4053–60.

    Article  CAS  PubMed  Google Scholar 

  28. Shimbayashi T, Fujita K-I. Advances in chemistry research. Volume 48 (ed James C Taylor) 213-58 (NOVA Science Publishers, 2019).

  29. Toyooka G, Tuji A, Fujita K-I. Efficient and versatile catalytic systems for the n-methylation of primary amines with methanol catalyzed by N-heterocyclic carbene complexes of iridium. Synthesis 2018;50:4617–26.

    Article  CAS  Google Scholar 

  30. Fujita K-I, Furukawa S, Morishima N, et al. N-Alkylation of aqueous ammonia with alcohols leading to primary amines catalyzed by water-soluble N-heterocyclic carbene complexes of iridium. ChemCatChem 2018;10:1993–7.

    Article  CAS  Google Scholar 

  31. Kawahara R, Fujita K-I, Yamaguchi R, et al. N-Alkylation of amines with alcohols catalyzed by a water-soluble Cp*iridium complex: an efficient method for the synthesis of amines in aqueous media. Adv Synth Catal. 2011;353:1161–8.

    Article  CAS  Google Scholar 

  32. Ida S, Kitanaka H, Ishikawa T, Kanaoka S, Hirokawa Y. Swelling properties of thermoresponsive/hydrophilic co-networks with functional crosslinked domain structures. Polym Chem. 2018;9:1701–9.

    Article  CAS  Google Scholar 

  33. Ida S, Morimura M, Kitanaka H, Hirokawa Y, Kanaoka S. Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors. Polym Chem. 2019;10:6122–30.

    Article  CAS  Google Scholar 

  34. Morimura M, Ida S, Oyama M, Takeshita H, Kanaoka S. Design of hydrogels with thermoresponsive crosslinked domain structures via the polymerization-induced self-assembly process and their thermoresponsive toughening in air. Macromolecules 2021;54:1732–41.

    Article  CAS  Google Scholar 

  35. Ida S, Okuno T, Morimura M, Suzuki K, Takeshita H, Oyama M, et al. Structure–property correlation of crosslinked domain hydrogels exhibiting thermoresponsive mechanical toughening and hybridization with photoluminescent carbon dots. Polym Chem. 2022;13:3479–88.

    Article  CAS  Google Scholar 

  36. Ida S. Structural design of vinyl polymer hydrogels utilizing precision radical polymerization. Polym J. 2019;51:803–12.

    Article  CAS  Google Scholar 

  37. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process. Aust J Chem. 2005;58:379–410.

    Article  CAS  Google Scholar 

  38. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process—a second update. Aust J Chem. 2009;62:1402–72.

    Article  CAS  Google Scholar 

  39. Gregory A, Stenzel MH. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog Polym Sci. 2012;37:38–105.

    Article  CAS  Google Scholar 

  40. Bivigou-Koumba AM, Kristen J, Laschewsky A, Müller-Buschbaum P, Papadakis CM. Synthesis of symmetrical triblock copolymers of styrene and n-isopropylacrylamide using bifunctional bis(trithiocarbonate)s as RAFT agents. Macromol Chem Phys. 2009;210:565–78.

    Article  CAS  Google Scholar 

  41. Ball RG, Graham WAG, Heinekey DM, Hoyano JK, McMaster AD, Mattson BM, et al. Synthesis and structure of dicarbonylbis(.eta.-pentamethylcyclopentadienyl)diiridium. Inorg Chem. 1990;29:2023–5.

    Article  CAS  Google Scholar 

  42. Berdzinski S, Strehmel B, Strehmel V. Photogenerated lophyl radicals in 1-alkyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imides. Photochem Photobio Sci. 2015;14:714–25.

    Article  CAS  Google Scholar 

  43. Misra GS, Bhattacharya SN. Determination of the molecular weight of polyacrylamide fractions by osmometry. Eur Polym J. 1979;15:125–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JST SPRING (Grant Number: JPMJSP2110) and the Japan Society for the Promotion of Science through a grant-in-aid for scientific research (C) (No. 19K05602) and (B) (No. 22H02075), for which the authors are grateful. The SAXS experiments at the Photon Factory were performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2021G570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Ida.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, S., Okuno, T., Shimbayashi, T. et al. Synthesis of thermoresponsive polymer gels with crosslinked domains containing iridium complexes for ammonia sensing and N-alkylation catalysis. Polym J 55, 945–955 (2023). https://doi.org/10.1038/s41428-023-00801-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00801-9

This article is cited by

Search

Quick links