Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cononsolvency of poly(carboxybetaine methacrylate) in water–ethanol mixed solvents

Abstract

Cononsolvency refers to the phenomenon in which a polymer collapses in mixtures of good solvents with specific compositions. The coil-to-globule-to-coil transitions of a zwitterionic polymer, poly(2-[(N-2-methacryloyloxyethyl-N,N-dimethyl)ammonio]acetate) (PCB2), in water, ethanol, and water–ethanol mixed solvents were investigated and compared with those of poly[2-(methacryloyloxy)ethyl phosphorylcholine] (PMPC). PCB2 showed cononsolvency in water–ethanol mixed solvents with specific ethanol volume fractions. The reentrant square well-type sharp coil–globule transition was reproduced by a statistical mechanical model involving competitive hydrogen bonding and cooperative hydration. PCB2 showed a broader cononsolvency range than PMPC because of its lower association constants of water and ethanol and the marked competition for hydrogen bonding. The zwitterion-specific cononsolvency characteristics were rationalized with the electrostatic potentials and van der Waals energies of the zwitterions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kudaibergenov S, Jaeger W, Laschewsky A. Polymeric Betaines: Synthesis, Characterization, and Application. Adv Polym Sci. 2006;201:157–224.

    Article  CAS  Google Scholar 

  2. Paschke S, Lienkamp K. Polyzwitterions: From Surface Properties and Bioactivity Profiles to Biomedical Applications. ACS Appl Polym Mater. 2020;2:129–51.

    Article  CAS  Google Scholar 

  3. Nikkhah SJ, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS Eng Au. 2022;2:274–94.

    Article  Google Scholar 

  4. Qian H, Wang K, Lv M, Zhao C, Wang H, Wen S, et al. Recent advances on next generation of polyzwitterion-based nano-vectors for targeted drug delivery. J Controlled Release. 2022;343:492–505.

    Article  CAS  Google Scholar 

  5. Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, et al. Wettability and Antifouling Behavior on the Surfaces of Superhydrophilic Polymer Brushes. Langmuir 2012;28:7212–22.

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi M, Terayama Y, Kikuchi M, Takahara A. Chain Dimensions and Surface Characterization of Superhydrophilic Polymer Brushes with Zwitterion Side Groups. Soft Matter. 2013;9:5138–48.

    Article  CAS  Google Scholar 

  7. Jiang S, Cao Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv Mater. 2010;22:920–32.

    Article  CAS  PubMed  Google Scholar 

  8. Higaki Y, Kobayashi M, Murakami D, Takahara A. Anti-fouling Behavior of Polymer Brush Immobilized Surfaces. Polym J. 2016;48:325–31.

    Article  CAS  Google Scholar 

  9. Chen M, Briscoe WH, Armes SP, Klein J. Lubrication at Physiological Pressures by Polyzwitterionic Brushes. Science. 2009;323:1698–701.

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, et al. Friction Behavior of High-Density Poly(2-methacryloyloxyethyl phosphorylcholine) Brush in Aqueous Media. Soft Matter. 2007;3:740–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ishihara K. Blood-Compatible Surfaces with Phosphorylcholine-Based Polymers for Cardiovascular Medical Devices. Langmuir 2019;35:1778–87.

    Article  CAS  PubMed  Google Scholar 

  12. Georgiev GS, Kamenska EB, Vassileva ED, Kamenova IP, Georgieva VT, Iliev SB, et al. Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules. 2006;7:1329–34.

    Article  CAS  PubMed  Google Scholar 

  13. Wang F, Yang J, Zhao J. Understanding anti-polyelectrolyte behavior of a well-defined polyzwitterion at the single-chain level. Polym Int. 2015;64:27045–51.

    Article  Google Scholar 

  14. Laschewsky A, Rosenhahn A. Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. Langmuir. 2019;35:1056–71.

    Article  CAS  PubMed  Google Scholar 

  15. Hildebrand V, Laschewsky A, Päch M, Müller-Buschbaum P, Papadakis CM. Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates). Polym Chem. 2017;8:310–22.

    Article  CAS  Google Scholar 

  16. Chevalier Y, Le Perchec P. Intercharge distance of flexible zwitterionic molecules in solution. J Phys Chem. 1990;94:1768–74.

    Article  CAS  Google Scholar 

  17. Schlenoff JB. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir. 2014;30:9625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shimizu A, Hifumi E, Kojio K, Takahara A, Higaki Y. Modulation of Double Zwitterionic Block Copolymer Aggregates by Zwitterion-Specific Interactions. Langmuir. 2021;37:14760–6.

    Article  CAS  PubMed  Google Scholar 

  19. Higaki Y, Inutsuka Y, Sakamaki T, Terayama Y, Takenaka A, Higaki K, et al. Effect of Charged Group Spacer Length on Hydration State in Zwitterionic Poly(sulfobetaine) Brushes. Langmuir. 2017;33:8404–12.

    Article  CAS  PubMed  Google Scholar 

  20. Bharadwaj S, Niebuur BJ, Nothdurft K, Richtering W, van der Vegt NFA, Papadakis CM. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. Soft Matter. 2022;18:2884–909.

    Article  CAS  PubMed  Google Scholar 

  21. Hirokawa Y, Tanaka T. Volume Phase Transition in a Nonionic Gel. J Chem Phys. 1984;81:6379–80.

    Article  Google Scholar 

  22. Amiya T, Hirokawa Y, Hirose Y, Li Y, Tanaka T. Reentrant Phase Transition of N-isopropylacrylamide Gels in Mixed Solvents. J Chem Phys. 1987;86:2375.

    Article  CAS  Google Scholar 

  23. Winnik FM, Ringsdorf H, Venzmer J. Methanol-Water as a Co-nonsolvent System for Poly(N-isopropylacrylamide). Macromolecules. 1990;23:2415–6.

    Article  CAS  Google Scholar 

  24. Schild HG, Muthukumar M, Tirrell DA. Cononsolvency in Mixed Aqueous Solutions of Poly(N-isopropylacrylamide). Macromolecules. 1991;24:948–52.

    Article  CAS  Google Scholar 

  25. Kreuzer LP, Lindenmeir C, Geiger C, Widmann T, Hildebrand V, Laschewsky A, et al. Poly(sulfobetaine) versus Poly(N‑isopropylmethacrylamide): Co‑Nonsolvency-Type Behavior of Thin Films in a Water/Methanol Atmosphere. Macromolecules. 2021;54:1548–56.

    Article  CAS  Google Scholar 

  26. Zhang G, Wu C. The Water/Methanol Complexation Induced Reentrant Coil-to-Globule-to-Coil Transition of Individual Homopolymer Chains in Extremely Dilute Solution. J Am Chem Soc. 2001;123:1376–80.

    Article  CAS  Google Scholar 

  27. Tanaka F, Koga T, Winnik FM. Temperature-Responsive Polymers in Mixed Solvents: Competitive Hydrogen Bonds Cause Cononsolvency. Phys Rev Lett. 2008;101:028302.

    Article  PubMed  Google Scholar 

  28. Mukherji D, Marques CM, Kremer K. Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption. Nat Commun. 2014;5:4882.

    Article  PubMed  Google Scholar 

  29. Picaa A, Graziano G. An alternative explanation of the cononsolvency of poly(N-isopropylacrylamide) in water–methanol solutions. Phys Chem Chem Phys. 2016;18:25601–8.

    Article  Google Scholar 

  30. Bharadwaj S, Nayar D, Dalgicdir C, van der Vegt NFA. An Interplay of Excluded-Volume and Polymer–(co)solvent Attractive Interactions Regulates Polymer Collapse in Mixed Solvents. J Chem Phys. 2021;154:134903.

    Article  CAS  PubMed  Google Scholar 

  31. Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A. UCST-Type Cononsolvency Behavior of Poly(2-methacryloxyethyl phosphorylcholine) in the Mixture of Water and Ethanol. Polym J. 2008;40:479–83.

    Article  CAS  Google Scholar 

  32. Edmondson S, Nguyen NT, Lewis AL, Armes SP. Co-Nonsolvency Effects for Surface-Initiated Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Brushes in Alcohol/Water Mixtures. Langmuir. 2010;26:7216–26.

    Article  CAS  PubMed  Google Scholar 

  33. Ihara D, Higaki Y, Yamada NL, Nemoto F, Matsuda Y, Kojio K, et al. Cononsolvency of Poly[2-(methacryloyloxy)ethyl phosphorylcholine] in Ethanol−Water Mixtures: A Neutron Reflectivity Study.Langmuir. 2022;38:5081–8.

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi M, Shimizu A, Yusa S-I, Higaki Y. Lyotropic Morphology Transition of Double Zwitterionic Diblock Copolymer Aqueous Solutions. Macromol Chem Phys. 2021;222:2000377.

    Article  CAS  Google Scholar 

  35. Pérez-Ramírez HA, Haro-Pérez C, Odriozola G. Effect of Temperature on the Cononsolvency of Poly(N-isopropylacrylamide) (PNIPAM) in Aqueous 1-Propanol. ACS Appl Polym Mater. 2019;1:2961–72.

    Article  Google Scholar 

  36. Otake K, Inomata H, Konno M, Saito S. Thermal Analysis of the Volume Phase Transition with N-isopropylacrylamide Gels. Macromolecules. 1990;23:283–9.

    Article  CAS  Google Scholar 

  37. Ohta H, Ando I, Fujishige S, Kubota K. Molecular Motion and 1H NMR Relaxation of Aqueous Poly(N-isopropylacrylamide) Solution Under High Pressure. J Polym Sci B Polym Phys. 1991;29:963–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP22H02147 (Grant-in-Aid for Scientific Research (B)) and JP22H04555, JP19H05714 (Grant-in-Aid for Scientific Research on Innovative Area: Aquatic Functional Materials). Y.H. acknowledges the Tokuyama Science Foundation and the KOSÉ Cosmetology Research Foundation for financial support. This work was supported by the Oita University President’s Strategic Discretionary Fund. This work was partially supported by the Cooperative Research Program of the Network Joint Research Center for Materials and Devices. The authors acknowledge Y. Saruwatari (Osaka Organic Chemical Industry Ltd.) for a kind donation of the carboxybetaine methacrylate monomer. We thank D. Ihara for assistance with the statistical mechanical model simulations. We thank Kathryn Sole, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this paper.

Author information

Authors and Affiliations

Authors

Contributions

The paper was written with contributions from all authors, and all authors have approved the final version of the paper. Y.H. conceived and directed the project. N.K., T.M., and M.N. performed the experiments and analyzed the results. E.H. contributed to the DLS experiments.

Corresponding author

Correspondence to Yuji Higaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higaki, Y., Kuraoka, N., Masuda, T. et al. Cononsolvency of poly(carboxybetaine methacrylate) in water–ethanol mixed solvents. Polym J 55, 869–876 (2023). https://doi.org/10.1038/s41428-023-00780-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00780-x

Search

Quick links